These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


409 related items for PubMed ID: 8058130

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. 2-DG uptake patterns related to single vibrissae during exploratory behaviors in the hamster trigeminal system.
    Jacquin MF, McCasland JS, Henderson TA, Rhoades RW, Woolsey TA.
    J Comp Neurol; 1993 Jun 01; 332(1):38-58. PubMed ID: 8390494
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Common fur and mystacial vibrissae parallel sensory pathways: 14 C 2-deoxyglucose and WGA-HRP studies in the rat.
    Sharp FR, Gonzalez MF, Morgan CW, Morton MT, Sharp JW.
    J Comp Neurol; 1988 Apr 15; 270(3):446-69. PubMed ID: 3372744
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Functional development of the vibrissae somatosensory system of the rat: (14C) 2-deoxyglucose metabolic mapping study.
    Wu CC, Gonzalez MF.
    J Comp Neurol; 1997 Aug 04; 384(3):323-36. PubMed ID: 9254030
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Vibrissae tactile stimulation: (14C) 2-deoxyglucose uptake in rat brainstem, thalamus, and cortex.
    Gonzalez MF, Sharp FR.
    J Comp Neurol; 1985 Jan 22; 231(4):457-72. PubMed ID: 3968249
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Intensity-dependent adaptation of cortical and thalamic neurons is controlled by brainstem circuits of the sensory pathway.
    Ganmor E, Katz Y, Lampl I.
    Neuron; 2010 Apr 29; 66(2):273-86. PubMed ID: 20435003
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Sensory loss by selected whisker removal produces immediate disinhibition in the somatosensory cortex of behaving rats.
    Kelly MK, Carvell GE, Kodger JM, Simons DJ.
    J Neurosci; 1999 Oct 15; 19(20):9117-25. PubMed ID: 10516329
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Effects of cortical and thalamic lesions upon primary afferent terminations, distributions of projection neurons, and the cytochrome oxidase pattern in the trigeminal brainstem complex.
    Chiaia NL, Bennett-Clarke CA, Rhoades RW.
    J Comp Neurol; 1991 Jan 22; 303(4):600-16. PubMed ID: 1849519
    [Abstract] [Full Text] [Related]

  • 17. Medial Prefrontal Cortical Modulation of Whisker Thalamic Responses in Anesthetized Rats.
    Escudero G, Nuñez A.
    Neuroscience; 2019 May 15; 406():626-636. PubMed ID: 30825581
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.