These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
74 related items for PubMed ID: 8060353
1. The 90 kDa heat shock protein (hsp90) induces the condensation of the chromatin structure. Csermely P, Kajtár J, Hollósi M, Oikarinen J, Somogyi J. Biochem Biophys Res Commun; 1994 Aug 15; 202(3):1657-63. PubMed ID: 8060353 [Abstract] [Full Text] [Related]
2. ATP induces a conformational change of the 90-kDa heat shock protein (hsp90). Csermely P, Kajtár J, Hollósi M, Jalsovszky G, Holly S, Kahn CR, Gergely P, Söti C, Mihály K, Somogyi J. J Biol Chem; 1993 Jan 25; 268(3):1901-7. PubMed ID: 8420964 [Abstract] [Full Text] [Related]
3. Condensation of DNA and chromatin by an SPKK-containing octapeptide repeat motif present in the C-terminus of histone H1. Khadake JR, Rao MR. Biochemistry; 1997 Feb 04; 36(5):1041-51. PubMed ID: 9033394 [Abstract] [Full Text] [Related]
4. A novel chaperone-activity-reducing mechanism of the 90-kDa molecular chaperone HSP90. Itoh H, Ogura M, Komatsuda A, Wakui H, Miura AB, Tashima Y. Biochem J; 1999 Nov 01; 343 Pt 3(Pt 3):697-703. PubMed ID: 10527951 [Abstract] [Full Text] [Related]
5. Binding of immunophilins to the 90 kDa heat shock protein (hsp90) via a tetratricopeptide repeat domain is a conserved protein interaction in plants. Owens-Grillo JK, Stancato LF, Hoffmann K, Pratt WB, Krishna P. Biochemistry; 1996 Dec 03; 35(48):15249-55. PubMed ID: 8952474 [Abstract] [Full Text] [Related]
6. [Chromatin compactification using a model system of DNA-protein complexes]. Chikhirzhina EV, Kostyleva EI, Ramm EI, Vorob'ev VI. Tsitologiia; 1998 Dec 03; 40(10):883-8. PubMed ID: 9864819 [Abstract] [Full Text] [Related]
7. Hsp90 is a direct target of the anti-allergic drugs disodium cromoglycate and amlexanox. Okada M, Itoh H, Hatakeyama T, Tokumitsu H, Kobayashi R. Biochem J; 2003 Sep 01; 374(Pt 2):433-41. PubMed ID: 12803546 [Abstract] [Full Text] [Related]
8. Structural studies on the co-chaperone Hop and its complexes with Hsp90. Onuoha SC, Coulstock ET, Grossmann JG, Jackson SE. J Mol Biol; 2008 Jun 13; 379(4):732-44. PubMed ID: 18485364 [Abstract] [Full Text] [Related]
9. IC101 induces apoptosis by Akt dephosphorylation via an inhibition of heat shock protein 90-ATP binding activity accompanied by preventing the interaction with Akt in L1210 cells. Fujiwara H, Yamakuni T, Ueno M, Ishizuka M, Shinkawa T, Isobe T, Ohizumi Y. J Pharmacol Exp Ther; 2004 Sep 13; 310(3):1288-95. PubMed ID: 15161934 [Abstract] [Full Text] [Related]
10. Effect of geldanamycin on the kinetics of chaperone-mediated renaturation of firefly luciferase in rabbit reticulocyte lysate. Thulasiraman V, Matts RL. Biochemistry; 1996 Oct 15; 35(41):13443-50. PubMed ID: 8873613 [Abstract] [Full Text] [Related]
11. Histone H1 and its isoforms: contribution to chromatin structure and function. Happel N, Doenecke D. Gene; 2009 Feb 15; 431(1-2):1-12. PubMed ID: 19059319 [Abstract] [Full Text] [Related]
12. Chromatin accessibility to DNA minor groove ligands in vitro: role of linker histones and amino-terminal domains of octamer histones. Foderà R, Caneva R, Canzonetta C, Savino M. Boll Soc Ital Biol Sper; 2000 Feb 15; 76(3-4):21-30. PubMed ID: 11449825 [Abstract] [Full Text] [Related]
13. An unstructured C-terminal region of the Hsp90 co-chaperone p23 is important for its chaperone function. Weikl T, Abelmann K, Buchner J. J Mol Biol; 1999 Oct 29; 293(3):685-91. PubMed ID: 10543959 [Abstract] [Full Text] [Related]
14. [Linker histones: conformational changes and the role in the structural organization of chromatin]. Chikhirzhina EV, Vorob'ev VI. Tsitologiia; 2002 Oct 29; 44(8):721-36. PubMed ID: 12506665 [Abstract] [Full Text] [Related]
16. Analysis of Hsp90 cochaperone interactions reveals a novel mechanism for TPR protein recognition. Chadli A, Bruinsma ES, Stensgard B, Toft D. Biochemistry; 2008 Mar 04; 47(9):2850-7. PubMed ID: 18211007 [Abstract] [Full Text] [Related]
17. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding. Carruthers LM, Bednar J, Woodcock CL, Hansen JC. Biochemistry; 1998 Oct 20; 37(42):14776-87. PubMed ID: 9778352 [Abstract] [Full Text] [Related]
18. Structures and interactions of the core histone tail domains. Zheng C, Hayes JJ. Biopolymers; 2003 Apr 20; 68(4):539-46. PubMed ID: 12666178 [Abstract] [Full Text] [Related]