These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


209 related items for PubMed ID: 8069254

  • 1. Role of cholinergic neurotransmission in the amygdala on performances of passive avoidance learning in mice.
    Nomura Y, Nishiyama N, Saito H, Matsuki N.
    Biol Pharm Bull; 1994 Apr; 17(4):490-4. PubMed ID: 8069254
    [Abstract] [Full Text] [Related]

  • 2. Negative and positive effects of intracerebroventricular scopolamine on memory in mice undergoing passive avoidance and escape tests.
    Nakajima M, Inui A, Miura M, Hirosue Y, Okita M, Himori N, Baba S, Kasuga M.
    Brain Res Bull; 1994 Apr; 34(4):375-80. PubMed ID: 8082028
    [Abstract] [Full Text] [Related]

  • 3. Possible mechanism of endosulfan-induced enhancement of memory acquisition and retention in mice.
    Chugh Y, Sankaranarayanan A, Sharma PL.
    Indian J Physiol Pharmacol; 1994 Apr; 38(2):138-40. PubMed ID: 8063360
    [Abstract] [Full Text] [Related]

  • 4. Scopolamine amnesia of passive avoidance: a deficit of information acquisition.
    Rush DK.
    Behav Neural Biol; 1988 Nov; 50(3):255-74. PubMed ID: 3202811
    [Abstract] [Full Text] [Related]

  • 5. Scopolamine injected into the rat amygdala impairs working memory in the double Y-maze.
    Ingles JL, Beninger RJ, Jhamandas K, Boegman RJ.
    Brain Res Bull; 1993 Nov; 32(4):339-44. PubMed ID: 8221123
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Some effects of CNS cholinergic neurons on memory.
    Goto T, Kuzuya F, Endo H, Tajima T, Ikari H.
    J Neural Transm Suppl; 1990 Nov; 30():1-11. PubMed ID: 2391512
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Dynorphin A-(1-13) potently improves scopolamine-induced impairment of passive avoidance response in mice.
    Ukai M, Kobayashi T, Shinkai N, Shan-Wu X, Kameyama T.
    Eur J Pharmacol; 1995 Feb 14; 274(1-3):89-93. PubMed ID: 7768285
    [Abstract] [Full Text] [Related]

  • 13. Effects of muscarinic receptor antagonism in the basolateral amygdala on two-way active avoidance.
    Carballo-Márquez A, Boadas-Vaello P, Villarejo-Rodríguez I, Guillazo-Blanch G, Martí-Nicolovius M, Vale-Martínez A.
    Exp Brain Res; 2011 Mar 14; 209(3):455-64. PubMed ID: 21318348
    [Abstract] [Full Text] [Related]

  • 14. Comparison of pro-amnesic efficacy of scopolamine, biperiden, and phencyclidine by using passive avoidance task in CD-1 mice.
    Malikowska N, Sałat K, Podkowa A.
    J Pharmacol Toxicol Methods; 2017 Jul 14; 86():76-80. PubMed ID: 28412329
    [Abstract] [Full Text] [Related]

  • 15. Strength of scopolamine-induced amnesia as a function of time between training and testing.
    Quartermain D, Leo P.
    Behav Neural Biol; 1988 Nov 14; 50(3):300-10. PubMed ID: 3202813
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Learning/memory processes under stress conditions.
    Kaneto H.
    Behav Brain Res; 1997 Feb 14; 83(1-2):71-4. PubMed ID: 9062663
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.