These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


302 related items for PubMed ID: 8074997

  • 1. The four animal blastomeres of the eight-cell stage of Xenopus laevis are intrinsically capable of differentiating into dorsal mesodermal derivatives.
    Grunz H.
    Int J Dev Biol; 1994 Mar; 38(1):69-76. PubMed ID: 8074997
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Cytoplasmic localization and chordamesoderm induction in the frog embryo.
    Gimlich RL.
    J Embryol Exp Morphol; 1985 Nov; 89 Suppl():89-111. PubMed ID: 3831222
    [Abstract] [Full Text] [Related]

  • 6. Dorsalization and neural induction: properties of the organizer in Xenopus laevis.
    Smith JC, Slack JM.
    J Embryol Exp Morphol; 1983 Dec; 78():299-317. PubMed ID: 6663230
    [Abstract] [Full Text] [Related]

  • 7. Blastomere derivation and domains of gene expression in the Spemann Organizer of Xenopus laevis.
    Vodicka MA, Gerhart JC.
    Development; 1995 Nov; 121(11):3505-18. PubMed ID: 8582265
    [Abstract] [Full Text] [Related]

  • 8. Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm.
    Kikkawa M, Yamazaki M, Izutsu Y, Maéno M.
    Int J Dev Biol; 2001 Apr; 45(2):387-96. PubMed ID: 11330858
    [Abstract] [Full Text] [Related]

  • 9. Formation of the dorsal marginal zone in Xenopus laevis analyzed by time-lapse microscopic magnetic resonance imaging.
    Papan C, Boulat B, Velan SS, Fraser SE, Jacobs RE.
    Dev Biol; 2007 May 01; 305(1):161-71. PubMed ID: 17368611
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Three regions of the 32-cell embryo of Xenopus laevis essential for formation of a complete tadpole.
    Kageura H.
    Dev Biol; 1995 Aug 01; 170(2):376-86. PubMed ID: 7649370
    [Abstract] [Full Text] [Related]

  • 14. Vegetal rotation, a new gastrulation movement involved in the internalization of the mesoderm and endoderm in Xenopus.
    Winklbauer R, Schürfeld M.
    Development; 1999 Aug 01; 126(16):3703-13. PubMed ID: 10409515
    [Abstract] [Full Text] [Related]

  • 15. Pattern formation in 8-cell composite embryos of Xenopus laevis.
    Kageura H, Yamana K.
    J Embryol Exp Morphol; 1986 Feb 01; 91():79-100. PubMed ID: 3711793
    [Abstract] [Full Text] [Related]

  • 16. Dorsal and ventral cells of cleavage-stage Xenopus embryos show the same ability to induce notochord and somite formation.
    Pierce KE, Brothers AJ.
    Dev Biol; 1988 Apr 01; 126(2):228-32. PubMed ID: 3350207
    [Abstract] [Full Text] [Related]

  • 17. The role of Mixer in patterning the early Xenopus embryo.
    Kofron M, Wylie C, Heasman J.
    Development; 2004 May 01; 131(10):2431-41. PubMed ID: 15128672
    [Abstract] [Full Text] [Related]

  • 18. Factors responsible for the establishment of the body plan in the amphibian embryo.
    Grunz H.
    Int J Dev Biol; 1996 Feb 01; 40(1):279-89. PubMed ID: 8735939
    [Abstract] [Full Text] [Related]

  • 19. Induction of neuronal differentiation by planar signals in Xenopus embryos.
    Sater AK, Steinhardt RA, Keller R.
    Dev Dyn; 1993 Aug 01; 197(4):268-80. PubMed ID: 8292824
    [Abstract] [Full Text] [Related]

  • 20. Endoderm specification and differentiation in Xenopus embryos.
    Horb ME, Slack JM.
    Dev Biol; 2001 Aug 15; 236(2):330-43. PubMed ID: 11476575
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.