These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
105 related items for PubMed ID: 8076887
1. [Methods for intracerebral injection]. Tomiyama K, Koshikawa N, Kobayashi M. Nihon Yakurigaku Zasshi; 1994 Jul; 104(1):1-5. PubMed ID: 8076887 [Abstract] [Full Text] [Related]
2. YM-09151-2 but not l-sulpiride induces transient dopamine release in rat striatum via a tetrodotoxin-insensitive mechanism. Tomiyama K, Noguchi M, Koshikawa N, Kobayashi M. J Neurochem; 1993 May; 60(5):1690-5. PubMed ID: 8473891 [Abstract] [Full Text] [Related]
3. 6-hydroxydopamine treatments enhance behavioral responses to intracerebral microinjection of D1- and D2-dopamine agonists into nucleus accumbens and striatum without changing dopamine antagonist binding. Breese GR, Duncan GE, Napier TC, Bondy SC, Iorio LC, Mueller RA. J Pharmacol Exp Ther; 1987 Jan; 240(1):167-76. PubMed ID: 3100767 [Abstract] [Full Text] [Related]
4. A remote insertion technique for intracerebral microinjections in freely moving animals. Parada MA, Puig de Parada M, Hoebel BG. J Neurosci Methods; 1993 Nov; 50(2):237-41. PubMed ID: 8107503 [Abstract] [Full Text] [Related]
5. Differential effects of the dopamine D2/D3 receptor antagonist sulpiride on self-administration of morphine into the ventral tegmental area or the nucleus accumbens. David V, Durkin TP, Cazala P. Psychopharmacology (Berl); 2002 Mar; 160(3):307-17. PubMed ID: 11889500 [Abstract] [Full Text] [Related]
6. Dopamine D1 and D2 receptor-mediated acute and long-lasting behavioral effects of glial cell line-derived neurotrophic factor administered into the striatum. Kobayashi S, Ogren SO, Hoffer BJ, Olson L. Exp Neurol; 1998 Dec; 154(2):302-14. PubMed ID: 9878169 [Abstract] [Full Text] [Related]
7. New multi-cannula pedestal device for micro-injection of drugs into brain tissue or cerebral ventricle. Hepler JR, Myers RD. Pharmacol Biochem Behav; 1983 May; 18(5):791-5. PubMed ID: 6856651 [Abstract] [Full Text] [Related]
8. A new microcannula for injections in rat brains without disturbing social interactions. Roeling TA, Hekman E, Helmer J, Veening JG. Physiol Behav; 1993 May; 53(5):1007-9. PubMed ID: 8511194 [Abstract] [Full Text] [Related]
9. The use of cerebral ventriculography for verification of intracerebroventricular cannula placement in the live rat. Gwosdow AR, Besch EL, Poulos PW, Ganey T. Lab Anim Sci; 1985 Apr; 35(2):176-7. PubMed ID: 3873576 [Abstract] [Full Text] [Related]
10. A simple and inexpensive method to fabricate a cannula system for intracranial injections in rats and mice. Kokare DM, Shelkar GP, Borkar CD, Nakhate KT, Subhedar NK. J Pharmacol Toxicol Methods; 2011 Apr; 64(3):246-50. PubMed ID: 21856432 [Abstract] [Full Text] [Related]
11. Microinjection of propofol into the perifornical area induces sedation with decreasing cortical acetylcholine release in rats. Gamou S, Fukuda S, Ogura M, Sakamoto H, Morita S. Anesth Analg; 2010 Aug; 111(2):395-402. PubMed ID: 20495137 [Abstract] [Full Text] [Related]
12. Effects intracerebral microinjection and intraperitoneal injection of [60]fullerene on brain functions differ in rats. Yamada T, Jung DY, Sawada R, Matsuoka A, Nakaoka R, Tsuchiya T. J Nanosci Nanotechnol; 2008 Aug; 8(8):3973-80. PubMed ID: 19049160 [Abstract] [Full Text] [Related]
13. Antistereotypic effects of dopamine D-1 and D-2 antagonists after intrastriatal injection in rats. Pharmacological and regional specificity. Arnt J. Naunyn Schmiedebergs Arch Pharmacol; 1985 Aug; 330(2):97-104. PubMed ID: 2864641 [Abstract] [Full Text] [Related]
14. Manufacture and use of fused silica cannulas for intracerebral injections in freely moving rats. Berger ML, Reither H, Schmid RW, Lassmann H. J Neurosci Methods; 1989 Apr; 27(3):225-34. PubMed ID: 2542695 [Abstract] [Full Text] [Related]
16. A pressure system for the microinjection of substances into the brain of awake monkeys. Dias EC, Segraves MA. J Neurosci Methods; 1997 Mar; 72(1):43-7. PubMed ID: 9128167 [Abstract] [Full Text] [Related]
17. Stress-free microinjections in conscious rats. Zaretsky DV, Zaretskaia MV, Rusyniak DE, Dimicco JA. J Neurosci Methods; 2011 Aug 15; 199(2):199-207. PubMed ID: 21600924 [Abstract] [Full Text] [Related]
18. [The effect on rat behavior of phenamine contained in a cannula chronically implanted in the neostriatum]. Iakimovskiĭ AF, Shatik SV, Chivileva OG, Gorbachevskaia AI. Zh Vyssh Nerv Deiat Im I P Pavlova; 1996 Aug 15; 46(2):335-41. PubMed ID: 8726567 [Abstract] [Full Text] [Related]
19. Dopamine release in the nucleus accumbens and latent inhibition in the rat following microinjections of a 5-HT1B agonist into the dorsal subiculum: implications for schizophrenia. Boulenguez P, Peters SL, Mitchell SN, Chauveau J, Gray JA, Joseph MH. J Psychopharmacol; 1998 Aug 15; 12(3):258-67. PubMed ID: 10958252 [Abstract] [Full Text] [Related]
20. Levodopa acts centrally to induce an antinociceptive action against colonic distension through activation of D2 dopamine receptors and the orexinergic system in the brain in conscious rats. Okumura T, Nozu T, Kumei S, Takakusaki K, Miyagishi S, Ohhira M. J Pharmacol Sci; 2016 Feb 15; 130(2):123-7. PubMed ID: 26883457 [Abstract] [Full Text] [Related] Page: [Next] [New Search]