These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


475 related items for PubMed ID: 8082655

  • 1. Calcium/calmodulin induces phosphorylation of vimentin and myosin light chain and cell rounding in cultured adrenal cells.
    Almahbobi G, Korn M, Hall PF.
    Eur J Cell Biol; 1994 Apr; 63(2):307-15. PubMed ID: 8082655
    [Abstract] [Full Text] [Related]

  • 2. Roles of microfilaments and intermediate filaments in adrenal steroidogenesis.
    Hall PF, Almahbobi G.
    Microsc Res Tech; 1997 Mar 15; 36(6):463-79. PubMed ID: 9142693
    [Abstract] [Full Text] [Related]

  • 3. PKC mediates 12(S)-HETE-induced cytoskeletal rearrangement in B16a melanoma cells.
    Timar J, Tang D, Bazaz R, Haddad MM, Kimler VA, Taylor JD, Honn KV.
    Cell Motil Cytoskeleton; 1993 Mar 15; 26(1):49-65. PubMed ID: 8221907
    [Abstract] [Full Text] [Related]

  • 4. The roles of microfilaments and intermediate filaments in the regulation of steroid synthesis.
    Hall PF.
    J Steroid Biochem Mol Biol; 1995 Dec 15; 55(5-6):601-5. PubMed ID: 8547187
    [Abstract] [Full Text] [Related]

  • 5. Protein kinase C-induced redistribution of the cytoskeleton and phosphorylation of vimentin in cultured brain macrophages.
    Ciesielski-Treska J, Ulrich G, Aunis D.
    J Neurosci Res; 1991 Jul 15; 29(3):362-78. PubMed ID: 1920533
    [Abstract] [Full Text] [Related]

  • 6. Taxol induces concomitant hyperphosphorylation and reorganization of vimentin intermediate filaments in 9L rat brain tumor cells.
    Chu JJ, Chen KD, Lin YL, Fei CY, Chiang AS, Chiang CD, Lai YK.
    J Cell Biochem; 1998 Mar 15; 68(4):472-83. PubMed ID: 9493910
    [Abstract] [Full Text] [Related]

  • 7. The roles of calmodulin, actin, and vimentin in steroid synthesis by adrenal cells.
    Hall PF.
    Steroids; 1997 Jan 15; 62(1):185-9. PubMed ID: 9029735
    [Abstract] [Full Text] [Related]

  • 8. Thrombin-induced phosphorylation of the regulatory light chain of myosin II in cultured bovine corneal endothelial cells.
    Satpathy M, Gallagher P, Lizotte-Waniewski M, Srinivas SP.
    Exp Eye Res; 2004 Oct 15; 79(4):477-86. PubMed ID: 15381032
    [Abstract] [Full Text] [Related]

  • 9. Histamine-induced phosphorylation of the regulatory light chain of myosin II disrupts the barrier integrity of corneal endothelial cells.
    Srinivas SP, Satpathy M, Guo Y, Anandan V.
    Invest Ophthalmol Vis Sci; 2006 Sep 15; 47(9):4011-8. PubMed ID: 16936117
    [Abstract] [Full Text] [Related]

  • 10. Inhibitory effect of phosphorylated myosin light chain kinase on the ATP-dependent actin-myosin interaction.
    Samizo K, Okagaki T, Kohama K.
    Biochem Biophys Res Commun; 1999 Jul 22; 261(1):95-9. PubMed ID: 10405329
    [Abstract] [Full Text] [Related]

  • 11. Cytoskeletal dynamics in rabbit synovial fibroblasts: II. Reformation of stress fibers in cells rounded by treatment with collagenase-inducing agents.
    Aggeler J.
    Cell Motil Cytoskeleton; 1990 Jul 22; 16(2):121-32. PubMed ID: 2165440
    [Abstract] [Full Text] [Related]

  • 12. Caldesmon is necessary for maintaining the actin and intermediate filaments in cultured bladder smooth muscle cells.
    Deng M, Mohanan S, Polyak E, Chacko S.
    Cell Motil Cytoskeleton; 2007 Dec 22; 64(12):951-65. PubMed ID: 17868135
    [Abstract] [Full Text] [Related]

  • 13. Site-specific phosphorylation induces disassembly of vimentin filaments in vitro.
    Inagaki M, Nishi Y, Nishizawa K, Matsuyama M, Sato C.
    Nature; 2007 Dec 22; 328(6131):649-52. PubMed ID: 3039376
    [Abstract] [Full Text] [Related]

  • 14. Reversible hyperphosphorylation and reorganization of vimentin intermediate filaments by okadaic acid in 9L rat brain tumor cells.
    Lee WC, Yu JS, Yang SD, Lai YK.
    J Cell Biochem; 1992 Aug 22; 49(4):378-93. PubMed ID: 1331124
    [Abstract] [Full Text] [Related]

  • 15. Cytoskeleton architecture of C6 rat glioma cell subclones differing in intermediate filament protein expression.
    Bohn W, Röser K, Hohenberg H, Mannweiler K, Traub P.
    J Struct Biol; 1993 Aug 22; 111(1):48-58. PubMed ID: 8251263
    [Abstract] [Full Text] [Related]

  • 16. Evidence that intermediate filament reorganization is induced by ATP-dependent contraction of the actomyosin cortex in permeabilized fibroblasts.
    Tint IS, Hollenbeck PJ, Verkhovsky AB, Surgucheva IG, Bershadsky AD.
    J Cell Sci; 1991 Mar 22; 98 ( Pt 3)():375-84. PubMed ID: 1647400
    [Abstract] [Full Text] [Related]

  • 17. The role of caldesmon in the regulation of endothelial cytoskeleton and migration.
    Mirzapoiazova T, Kolosova IA, Romer L, Garcia JG, Verin AD.
    J Cell Physiol; 2005 Jun 22; 203(3):520-8. PubMed ID: 15521070
    [Abstract] [Full Text] [Related]

  • 18. On the relation between distinct components of the cytoskeleton: an epitope shared by intermediate filaments, microfilaments and cytoplasmic foci.
    Turner JR, Tartakoff AM.
    Eur J Cell Biol; 1990 Apr 22; 51(2):259-64. PubMed ID: 1693574
    [Abstract] [Full Text] [Related]

  • 19. Immunofluorescence studies of the cytoskeletal and contractile elements in cultured human trabecular cells.
    Tamura M, Iwamoto Y, Nakatsuka K, Yamanouchi U.
    Jpn J Ophthalmol; 1989 Apr 22; 33(1):95-102. PubMed ID: 2659860
    [Abstract] [Full Text] [Related]

  • 20. Molecular mechanism of histamine release: the role of intermediate filaments and membrane skeletons.
    Tasaka K.
    J Physiol Pharmacol; 1994 Dec 22; 45(4):479-92. PubMed ID: 7537124
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.