These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Altering the speract-induced ion permeability changes that generate flagellar Ca2+ spikes regulates their kinetics and sea urchin sperm motility. Wood CD, Nishigaki T, Tatsu Y, Yumoto N, Baba SA, Whitaker M, Darszon A. Dev Biol; 2007 Jun 15; 306(2):525-37. PubMed ID: 17467684 [Abstract] [Full Text] [Related]
3. Participation of a K(+) channel modulated directly by cGMP in the speract-induced signaling cascade of strongylocentrotus purpuratus sea urchin sperm. Galindo BE, Beltrán C, Cragoe EJ, Darszon A. Dev Biol; 2000 May 15; 221(2):285-94. PubMed ID: 10790326 [Abstract] [Full Text] [Related]
4. Regulation of sperm flagellar motility activation and chemotaxis caused by egg-derived substance(s) in sea cucumber. Morita M, Kitamura M, Nakajima A, Sri Susilo E, Takemura A, Okuno M. Cell Motil Cytoskeleton; 2009 Apr 15; 66(4):202-14. PubMed ID: 19235200 [Abstract] [Full Text] [Related]
8. Tuning sperm chemotaxis by calcium burst timing. Guerrero A, Nishigaki T, Carneiro J, Yoshiro Tatsu, Wood CD, Darszon A. Dev Biol; 2010 Aug 01; 344(1):52-65. PubMed ID: 20435032 [Abstract] [Full Text] [Related]
9. Tuning sperm chemotaxis. Guerrero A, Wood CD, Nishigaki T, Carneiro J, Darszon A. Biochem Soc Trans; 2010 Oct 01; 38(5):1270-4. PubMed ID: 20863297 [Abstract] [Full Text] [Related]
10. Niflumic acid disrupts marine spermatozoan chemotaxis without impairing the spatiotemporal detection of chemoattractant gradients. Guerrero A, Espinal J, Wood CD, Rendón JM, Carneiro J, Martínez-Mekler G, Darszon A. J Cell Sci; 2013 Mar 15; 126(Pt 6):1477-87. PubMed ID: 23418354 [Abstract] [Full Text] [Related]
11. Sperm chemotaxis and regulation of flagellar movement by Ca2+. Yoshida M, Yoshida K. Mol Hum Reprod; 2011 Aug 15; 17(8):457-65. PubMed ID: 21610215 [Abstract] [Full Text] [Related]
14. Regulation of sperm flagellar motility by calcium and cAMP-dependent phosphorylation. Brokaw CJ. J Cell Biochem; 1987 Nov 15; 35(3):175-84. PubMed ID: 2826504 [Abstract] [Full Text] [Related]
15. Revisiting the role of H+ in chemotactic signaling of sperm. Solzin J, Helbig A, Van Q, Brown JE, Hildebrand E, Weyand I, Kaupp UB. J Gen Physiol; 2004 Aug 15; 124(2):115-24. PubMed ID: 15277573 [Abstract] [Full Text] [Related]
17. Peptide-induced hyperactivation-like vigorous flagellar movement in starfish sperm. Shiba K, Tagata T, Ohmuro J, Mogami Y, Matsumoto M, Hoshi M, Baba SA. Zygote; 2006 Feb 15; 14(1):23-32. PubMed ID: 16700972 [Abstract] [Full Text] [Related]
18. Fluid dynamic model of invertebrate sperm chemotactic motility with varying calcium inputs. Olson SD. J Biomech; 2013 Jan 18; 46(2):329-37. PubMed ID: 23218141 [Abstract] [Full Text] [Related]
19. Membrane potential regulates sea urchin sperm adenylylcyclase. Beltrán C, Zapata O, Darszon A. Biochemistry; 1996 Jun 11; 35(23):7591-8. PubMed ID: 8652541 [Abstract] [Full Text] [Related]
20. Na+/Ca2+ exchanger modulates the flagellar wave pattern for the regulation of motility activation and chemotaxis in the ascidian spermatozoa. Shiba K, Márián T, Krasznai Z, Baba SA, Morisawa M, Yoshida M. Cell Motil Cytoskeleton; 2006 Oct 11; 63(10):623-32. PubMed ID: 16869011 [Abstract] [Full Text] [Related] Page: [Next] [New Search]