These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


373 related items for PubMed ID: 8089491

  • 1. IL-10 mediates susceptibility to Trypanosoma cruzi infection.
    Reed SG, Brownell CE, Russo DM, Silva JS, Grabstein KH, Morrissey PJ.
    J Immunol; 1994 Oct 01; 153(7):3135-40. PubMed ID: 8089491
    [Abstract] [Full Text] [Related]

  • 2. [TH1 response in the experimental infection with Trypanosoma cruzi].
    Cardoni RL, Antúnez MI, Abrami AA.
    Medicina (B Aires); 1999 Oct 01; 59 Suppl 2():84-90. PubMed ID: 10668248
    [Abstract] [Full Text] [Related]

  • 3. IL-12 is essential for resistance against Yersinia enterocolitica by triggering IFN-gamma production in NK cells and CD4+ T cells.
    Bohn E, Autenrieth IB.
    J Immunol; 1996 Feb 15; 156(4):1458-68. PubMed ID: 8568248
    [Abstract] [Full Text] [Related]

  • 4. Kinetic analysis of antigen-specific immune responses in resistant and susceptible mice during infection with Trypanosoma cruzi.
    Hoft DF, Lynch RG, Kirchhoff LV.
    J Immunol; 1993 Dec 15; 151(12):7038-47. PubMed ID: 8258708
    [Abstract] [Full Text] [Related]

  • 5. Antigen-specific Il-4- and IL-10-secreting CD4+ lymphocytes increase in vivo susceptibility to Trypanosoma cruzi infection.
    Barbosa de Oliveira LC, Curotto de Lafaille MA, Collet de Araujo Lima GM, de Almeida Abrahamsohn I.
    Cell Immunol; 1996 May 25; 170(1):41-53. PubMed ID: 8660798
    [Abstract] [Full Text] [Related]

  • 6. Differential control of IFN-gamma and IL-2 production during Trypanosoma cruzi infection.
    Nabors GS, Tarleton RL.
    J Immunol; 1991 May 15; 146(10):3591-8. PubMed ID: 1902857
    [Abstract] [Full Text] [Related]

  • 7. Characterization of cytokine production in murine Trypanosoma cruzi infection by in situ immunocytochemistry: lack of association between susceptibility and type 2 cytokine production.
    Zhang L, Tarleton RL.
    Eur J Immunol; 1996 Jan 15; 26(1):102-9. PubMed ID: 8566051
    [Abstract] [Full Text] [Related]

  • 8. In vivo administration of recombinant IFN-gamma induces macrophage activation, and prevents acute disease, immune suppression, and death in experimental Trypanosoma cruzi infections.
    Reed SG.
    J Immunol; 1988 Jun 15; 140(12):4342-7. PubMed ID: 3131431
    [Abstract] [Full Text] [Related]

  • 9. Neutralization of IL-10 up-regulates nitric oxide production and protects susceptible mice from challenge with Candida albicans.
    Romani L, Puccetti P, Mencacci A, Cenci E, Spaccapelo R, Tonnetti L, Grohmann U, Bistoni F.
    J Immunol; 1994 Apr 01; 152(7):3514-21. PubMed ID: 7908304
    [Abstract] [Full Text] [Related]

  • 10. Leishmania sp: comparative study with Toxoplasma gondii and Trypanosoma cruzi in their ability to initialize IL-12 and IFN-gamma synthesis.
    Oliveira MA, Santiago HC, Lisboa CR, Ceravollo IP, Trinchieri G, Gazzinelli RT, Vieira LQ.
    Exp Parasitol; 2000 Jun 01; 95(2):96-105. PubMed ID: 10910710
    [Abstract] [Full Text] [Related]

  • 11. Trypanosoma cruzi: IL-10, TNF, IFN-gamma, and IL-12 regulate innate and acquired immunity to infection.
    Abrahamsohn IA, Coffman RL.
    Exp Parasitol; 1996 Nov 01; 84(2):231-44. PubMed ID: 8932773
    [Abstract] [Full Text] [Related]

  • 12. Selective suppressive effects of Trypanosoma cruzi infection on IL-2, c-myc, and c-fos gene expression.
    Soong L, Tarleton RL.
    J Immunol; 1992 Sep 15; 149(6):2095-102. PubMed ID: 1517573
    [Abstract] [Full Text] [Related]

  • 13. Genes from Chagas susceptibility loci that are differentially expressed in T. cruzi-resistant mice are candidates accounting for impaired immunity.
    Graefe SE, Streichert T, Budde BS, Nürnberg P, Steeg C, Müller-Myhsok B, Fleischer B.
    PLoS One; 2006 Dec 20; 1(1):e57. PubMed ID: 17183687
    [Abstract] [Full Text] [Related]

  • 14. Activation-induced T cell death exacerbates Trypanosoma cruzi replication in macrophages cocultured with CD4+ T lymphocytes from infected hosts.
    Nunes MP, Andrade RM, Lopes MF, DosReis GA.
    J Immunol; 1998 Feb 01; 160(3):1313-9. PubMed ID: 9570549
    [Abstract] [Full Text] [Related]

  • 15. Trypanosoma cruzi: the expansion of NK, T, and NKT cells in the experimental infection.
    Antúnez MI, Cardoni RL.
    Exp Parasitol; 2004 Feb 01; 106(3-4):85-94. PubMed ID: 15172215
    [Abstract] [Full Text] [Related]

  • 16. CTLA-4 regulates the murine immune response to Trypanosoma cruzi infection.
    Graefe SE, Jacobs T, Wächter U, Bröker BM, Fleischer B.
    Parasite Immunol; 2004 Jan 01; 26(1):19-28. PubMed ID: 15198642
    [Abstract] [Full Text] [Related]

  • 17. Recombinant granulocyte-macrophage colony-stimulating factor restores deficient immune responses in mice with chronic Trypanosoma cruzi infections.
    Reed SG, Grabstein KH, Pihl DL, Morrissey PJ.
    J Immunol; 1990 Sep 01; 145(5):1564-70. PubMed ID: 2117033
    [Abstract] [Full Text] [Related]

  • 18. IL-10 is required to prevent immune hyperactivity during infection with Trypanosoma cruzi.
    Hunter CA, Ellis-Neyes LA, Slifer T, Kanaly S, Grünig G, Fort M, Rennick D, Araujo FG.
    J Immunol; 1997 Apr 01; 158(7):3311-6. PubMed ID: 9120288
    [Abstract] [Full Text] [Related]

  • 19. Acute Trypanosoma cruzi infection: IL-12, IL-18, TNF, sTNFR and NO in T. rangeli-vaccinated mice.
    Basso B, Cervetta L, Moretti E, Carlier Y, Truyens C.
    Vaccine; 2004 May 07; 22(15-16):1868-72. PubMed ID: 15121297
    [Abstract] [Full Text] [Related]

  • 20. Cytokine and nitric oxide regulation of the immunosuppression in Trypanosoma cruzi infection.
    Abrahamsohn IA, Coffman RL.
    J Immunol; 1995 Oct 15; 155(8):3955-63. PubMed ID: 7561103
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.