These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
386 related items for PubMed ID: 8090432
1. Age-related changes in normal and cataractous human lens crystallins, separated by fast-performance liquid chromatography. Pereira PC, Ramalho JS, Faro CJ, Mota MC. Ophthalmic Res; 1994; 26(3):149-57. PubMed ID: 8090432 [Abstract] [Full Text] [Related]
2. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Harrington V, McCall S, Huynh S, Srivastava K, Srivastava OP. Mol Vis; 2004 Jul 19; 10():476-89. PubMed ID: 15303090 [Abstract] [Full Text] [Related]
3. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. Padayatti PS, Ng AS, Uchida K, Glomb MA, Nagaraj RH. Invest Ophthalmol Vis Sci; 2001 May 19; 42(6):1299-304. PubMed ID: 11328743 [Abstract] [Full Text] [Related]
4. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses. Srivastava K, Chaves JM, Srivastava OP, Kirk M. Exp Eye Res; 2008 Oct 19; 87(4):356-66. PubMed ID: 18662688 [Abstract] [Full Text] [Related]
5. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V, Srivastava OP, Kirk M. Mol Vis; 2007 Sep 14; 13():1680-94. PubMed ID: 17893670 [Abstract] [Full Text] [Related]
6. Distribution of water-soluble crystallins in microsectioned cataractous lenses from one hundred Egyptian patients. Bours J, el-Layeh AA, Emarah MH, Rink H. Ophthalmic Res; 1995 Sep 14; 27 Suppl 1():54-61. PubMed ID: 8577463 [Abstract] [Full Text] [Related]
7. Crystallin composition of human cataractous lens may be modulated by protein glycation. Ramalho J, Marques C, Pereira P, Mota MC. Graefes Arch Clin Exp Ophthalmol; 1996 Aug 14; 234 Suppl 1():S232-8. PubMed ID: 8871180 [Abstract] [Full Text] [Related]
8. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P, Saxena AK, Cui XL, Obrenovich M, Gudipaty K, Monnier VM. Invest Ophthalmol Vis Sci; 2000 May 14; 41(6):1473-81. PubMed ID: 10798665 [Abstract] [Full Text] [Related]
10. Comparison of d-aspartic acid contents in alpha A-crystallin from normal and age-matched cataractous human lenses. Fujii N, Takemoto LJ, Matsumoto S, Hiroki K, Boyle D, Akaboshi M. Biochem Biophys Res Commun; 2000 Nov 19; 278(2):408-13. PubMed ID: 11097850 [Abstract] [Full Text] [Related]
11. Alpha neoprotein molecules in normal lenses from animals of different ages and in cataractous lenses. Manski W, Malinowski K. Exp Eye Res; 1985 Feb 19; 40(2):179-90. PubMed ID: 3884353 [Abstract] [Full Text] [Related]
13. High molecular weight aggregate from cataractous and normal human lenses: characterization by antisera to lens crystallins. Kodama T, Wong R, Takemoto L. Jpn J Ophthalmol; 1988 Feb 19; 32(2):159-65. PubMed ID: 3184549 [Abstract] [Full Text] [Related]
15. Studies on lens proteins of mice with hereditary cataract. I. Comparative studies on the chemical and immunochemical properties of the soluble proteins of cataractous and normal mouse lenses. Wada E, Sugiura T, Nakamura H, Tsumita T. Biochim Biophys Acta; 1981 Feb 27; 667(2):251-9. PubMed ID: 7213804 [Abstract] [Full Text] [Related]
16. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach. Su SP, McArthur JD, Andrew Aquilina J. Exp Eye Res; 2010 Jul 27; 91(1):97-103. PubMed ID: 20433829 [Abstract] [Full Text] [Related]
17. Isolation and characterization of the crystallins of the normal and cataractous canine lens. Daniel WJ, Noonan NE, Gelatt KN. Curr Eye Res; 1984 Jul 27; 3(7):911-22. PubMed ID: 6467967 [Abstract] [Full Text] [Related]
18. Protein alterations in age-related cataract associated with a persistent hyaloid vascular system in senescence-accelerated mouse (SAM). Ashida Y, Takeda T, Hosokawa M. Exp Eye Res; 1994 Oct 27; 59(4):467-73. PubMed ID: 7859822 [Abstract] [Full Text] [Related]
19. Quantitation of membrane-associated crystallins from aging and cataractous human lenses. Takehana M, Takemoto L. Invest Ophthalmol Vis Sci; 1987 May 27; 28(5):780-4. PubMed ID: 3570688 [Abstract] [Full Text] [Related]
20. Characterization of alphaA-crystallin from high molecular weight aggregates in the normal human lens. Fujii N, Awakura M, Takemoto L, Inomata M, Takata T, Fujii N, Saito T. Mol Vis; 2003 Jul 07; 9():315-22. PubMed ID: 12847419 [Abstract] [Full Text] [Related] Page: [Next] [New Search]