These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


147 related items for PubMed ID: 809644

  • 1. [Characteristics of spore-forming bacteria of the genus Bacillus that break down caprolactam].
    Rotmistrov MN, Roĭ AA, Gvozdiak PI.
    Mikrobiologiia; 1975; 44(4):727-31. PubMed ID: 809644
    [Abstract] [Full Text] [Related]

  • 2. [Sporogenic bacteria--active destroyers of caprolactam].
    Gvozdiak PI, Roi AA, Rotmistrov MN.
    Prikl Biokhim Mikrobiol; 1974; 10(5):738-40. PubMed ID: 4219046
    [No Abstract] [Full Text] [Related]

  • 3. [Characteristics of plasmid pBS271 controlling epsilon-caprolactam degradation by bacteria in the genus Pseudomonas].
    Boronin AM, Grishchenkov VG, Kulakov LA, Naumova RP.
    Mikrobiologiia; 1986; 55(2):231-6. PubMed ID: 3724565
    [Abstract] [Full Text] [Related]

  • 4. [Extracellular amino acids of aerobic spore-forming bacteria].
    Smirnov VV, Reznik SR, Kudriavtsev VA, Osadchaia AI, Safronova LA.
    Mikrobiologiia; 1992; 61(5):865-72. PubMed ID: 1287408
    [Abstract] [Full Text] [Related]

  • 5. [Culture media for growth and spore formation of Bacillus subtilis and Bacillus licheniformis].
    Khil'ko TV.
    Mikrobiol Z; 2004; 66(1):36-41. PubMed ID: 15104053
    [Abstract] [Full Text] [Related]

  • 6. [Influence of clay minerals on the oxidative activity of the caprolactam destructors Bacillus subtilis 6 and 21].
    Rotmistrov MN, Stavskaya SS, Garbara SV, Cvozdyak PI.
    Prikl Biokhim Mikrobiol; 1975; 11(3):362-6. PubMed ID: 813198
    [Abstract] [Full Text] [Related]

  • 7. [Plasmids controlling biodegradation of epsilon-caprolactam].
    Esikova TZ, Grishchenkov VG, Boronin AM.
    Mikrobiologiia; 1990; 59(4):547-52. PubMed ID: 2263224
    [Abstract] [Full Text] [Related]

  • 8. [Stimulation of growth and spore formation of Bacillus subtilis by optimization of carbohydrate nutrition during submerged cultivation].
    Osadchaia AI, Kudriavtsev VA, Safronova LA, Kozachko IA, Smirnov VV.
    Prikl Biokhim Mikrobiol; 1997; 33(3):321-4. PubMed ID: 9297185
    [Abstract] [Full Text] [Related]

  • 9. [Participation of the antibiotics of Bac. pumilus and Bac. subtilis in the regulation of bacterial spore formation].
    Lukin AA, Korolev VI.
    Antibiotiki; 1979 Mar; 24(3):182-5. PubMed ID: 109036
    [Abstract] [Full Text] [Related]

  • 10. [The effect of the cultivation conditions on lectin production by representative bacteria in the genus Bacillus].
    Podgorskiĭ VS, Kovalenko EA, Get'man EI, V'iunitskaia VA.
    Mikrobiol Zh (1978); 1989 Mar; 51(6):30-4. PubMed ID: 2516230
    [Abstract] [Full Text] [Related]

  • 11. Denitrification with epsilon-caprolactam by acclimated mixed culture and by pure culture of bacteria isolated from polyacrylonitrile fibre manufactured wastewater treatment system.
    Lee CM, Wang CC.
    Water Sci Technol; 2004 Mar; 49(5-6):341-8. PubMed ID: 15137443
    [Abstract] [Full Text] [Related]

  • 12. [The antagonistic activity of spore bacteria in relation to representatives of the genus Erwinia].
    Sharga BM, Turianitsa AI, V'iunitskaia VA.
    Mikrobiol Z; 1994 Mar; 56(1):9-16. PubMed ID: 8087253
    [Abstract] [Full Text] [Related]

  • 13. Treatment with oxidizing agents damages the inner membrane of spores of Bacillus subtilis and sensitizes spores to subsequent stress.
    Cortezzo DE, Koziol-Dube K, Setlow B, Setlow P.
    J Appl Microbiol; 2004 Mar; 97(4):838-52. PubMed ID: 15357734
    [Abstract] [Full Text] [Related]

  • 14. [Biological flow tracers: growth and survival of Bacillus subtilis 65-8 under environmental stress].
    Hinojosa-Rebollar RE, Hernández-Delgadillo R, Mesta-Howard AM, Tapia-Mendieta MP, Ortigoza-Ferado J.
    Rev Latinoam Microbiol; 1995 Mar; 37(1):43-53. PubMed ID: 7784731
    [Abstract] [Full Text] [Related]

  • 15. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off.
    Peighamy-Ashnaei S, Sharifi-Tehrani A, Ahmadzadeh M, Behboudi K.
    Commun Agric Appl Biol Sci; 2007 Mar; 72(4):951-6. PubMed ID: 18396833
    [Abstract] [Full Text] [Related]

  • 16. Aggregation-based cooperation during bacterial aerobic degradation of polyethoxylated nonylphenols.
    Di Gioia D, Fambrini L, Coppini E, Fava F, Barberio C.
    Res Microbiol; 2004 Nov; 155(9):761-9. PubMed ID: 15501654
    [Abstract] [Full Text] [Related]

  • 17. Wet and dry density of Bacillus anthracis and other Bacillus species.
    Carrera M, Zandomeni RO, Sagripanti JL.
    J Appl Microbiol; 2008 Jul; 105(1):68-77. PubMed ID: 18298528
    [Abstract] [Full Text] [Related]

  • 18. [Proteolysis of collagen by several species of micromycetes and spore-forming bacteria].
    Iakovleva MB, Kozel'tsev VL.
    Prikl Biokhim Mikrobiol; 1994 Jul; 30(1):121-6. PubMed ID: 8146108
    [Abstract] [Full Text] [Related]

  • 19. Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strains: role of biosurfactants in enhancing bioavailability.
    Das K, Mukherjee AK.
    J Appl Microbiol; 2007 Jan; 102(1):195-203. PubMed ID: 17184335
    [Abstract] [Full Text] [Related]

  • 20. A procedure for high-yield spore production by Bacillus subtilis.
    Monteiro SM, Clemente JJ, Henriques AO, Gomes RJ, Carrondo MJ, Cunha AE.
    Biotechnol Prog; 2005 Jan; 21(4):1026-31. PubMed ID: 16080679
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.