These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
113 related items for PubMed ID: 8103684
1. Cytoplasmic calcium buffer, calbindin-D28k, is regulated by excitatory amino acids. Batini C, Palestini M, Thomasset M, Vigot R. Neuroreport; 1993 Jul; 4(7):927-30. PubMed ID: 8103684 [Abstract] [Full Text] [Related]
2. Upregulation of Calbindin-D-28k immunoreactivity by excitatory amino acids. Batini C, Guegan M, Palestini M, Thomasset M, Vigot R. Arch Ital Biol; 1997 Sep; 135(4):385-97. PubMed ID: 9270899 [Abstract] [Full Text] [Related]
3. Vulnerability to excitotoxic stimuli of cultured rat hippocampal neurons containing the calcium-binding proteins calretinin and calbindin D28K. Möckel V, Fischer G. Brain Res; 1994 Jun 13; 648(1):109-20. PubMed ID: 7922513 [Abstract] [Full Text] [Related]
4. Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein calbindin-D28k in cultured hippocampal neurons. Mattson MP, Rychlik B, Chu C, Christakos S. Neuron; 1991 Jan 13; 6(1):41-51. PubMed ID: 1670921 [Abstract] [Full Text] [Related]
5. Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. Chard PS, Bleakman D, Christakos S, Fullmer CS, Miller RJ. J Physiol; 1993 Dec 13; 472():341-57. PubMed ID: 8145149 [Abstract] [Full Text] [Related]
6. Calbindin D28K gene transfer via herpes simplex virus amplicon vector decreases hippocampal damage in vivo following neurotoxic insults. Phillips RG, Meier TJ, Giuli LC, McLaughlin JR, Ho DY, Sapolsky RM. J Neurochem; 1999 Sep 13; 73(3):1200-5. PubMed ID: 10461912 [Abstract] [Full Text] [Related]
7. Nitric oxide-evoked cGMP production in Purkinje cells in rat cerebellum: an immunocytochemical and pharmacological study. Marcoli M, Maura G, Cervetto C, Giacomini C, Oliveri D, Candiani S, Pestarino M. Neurochem Int; 2006 Dec 13; 49(7):683-90. PubMed ID: 16904241 [Abstract] [Full Text] [Related]
9. Endogenous Ca2+ buffer concentration and Ca2+ microdomains in hippocampal neurons. Müller A, Kukley M, Stausberg P, Beck H, Müller W, Dietrich D. J Neurosci; 2005 Jan 19; 25(3):558-65. PubMed ID: 15659591 [Abstract] [Full Text] [Related]
10. Gene transfer of calbindin D28k cDNA via herpes simplex virus amplicon vector decreases cytoplasmic calcium ion response and enhances neuronal survival following glutamatergic challenge but not following cyanide. Meier TJ, Ho DY, Park TS, Sapolsky RM. J Neurochem; 1998 Sep 19; 71(3):1013-23. PubMed ID: 9721726 [Abstract] [Full Text] [Related]
11. Calbindin D-28k immunoreactivity in the rat cerebellar cortex: age-related changes. Amenta F, Cavalotta D, Del Valle ME, Mancini M, Sabbatini M, Torres JM, Vega JA. Neurosci Lett; 1994 Aug 29; 178(1):131-4. PubMed ID: 7816322 [Abstract] [Full Text] [Related]
12. Time course and manner of Purkinje neuron death following a single ethanol exposure on postnatal day 4 in the developing rat. Light KE, Belcher SM, Pierce DR. Neuroscience; 2002 Aug 29; 114(2):327-37. PubMed ID: 12204202 [Abstract] [Full Text] [Related]
13. Calbindin-D28k in nerve cell nuclei. German DC, Ng MC, Liang CL, McMahon A, Iacopino AM. Neuroscience; 1997 Dec 29; 81(3):735-43. PubMed ID: 9316025 [Abstract] [Full Text] [Related]
14. Calbindin-D28k: role in determining intrinsically generated firing patterns in rat supraoptic neurones. Li Z, Decavel C, Hatton GI. J Physiol; 1995 Nov 01; 488 ( Pt 3)(Pt 3):601-8. PubMed ID: 8576851 [Abstract] [Full Text] [Related]
15. Intracellular calcium ion response to glucose in beta-cells of calbindin-D28k nullmutant mice and in betaHC13 cells overexpressing calbindin-D28k. Parkash J, Chaudhry MA, Amer AS, Christakos S, Rhoten WB. Endocrine; 2002 Aug 01; 18(3):221-9. PubMed ID: 12450313 [Abstract] [Full Text] [Related]
16. Acute hypoxia-induced alterations of calbindin-D28k immunoreactivity in cerebellar Purkinje cells of the guinea pig fetus at term. Katsetos CD, Spandou E, Legido A, Taylor ML, Zanelli SA, de Chadarevian JP, Christakos S, Mishra OP, Delivoria-Papadopoulos M. J Neuropathol Exp Neurol; 2001 May 01; 60(5):470-82. PubMed ID: 11379822 [Abstract] [Full Text] [Related]
17. Distribution of calcium binding protein mRNAs in rat cerebellar cortex. Kadowaki K, McGowan E, Mock G, Chandler S, Emson PC. Neurosci Lett; 1993 Apr 16; 153(1):80-4. PubMed ID: 8510828 [Abstract] [Full Text] [Related]
18. Quinolinic acid-induced increases in calbindin D28k immunoreactivity in rat striatal neurons in vivo and in vitro mimic the pattern seen in Huntington's disease. Huang Q, Zhou D, Sapp E, Aizawa H, Ge P, Bird ED, Vonsattel JP, DiFiglia M. Neuroscience; 1995 Mar 16; 65(2):397-407. PubMed ID: 7777157 [Abstract] [Full Text] [Related]
19. Calbindin-D28k fails to protect hippocampal neurons against ischemia in spite of its cytoplasmic calcium buffering properties: evidence from calbindin-D28k knockout mice. Klapstein GJ, Vietla S, Lieberman DN, Gray PA, Airaksinen MS, Thoenen H, Meyer M, Mody I. Neuroscience; 1998 Jul 16; 85(2):361-73. PubMed ID: 9622236 [Abstract] [Full Text] [Related]
20. Glutamate potentiates the toxicity of mutant Cu/Zn-superoxide dismutase in motor neurons by postsynaptic calcium-dependent mechanisms. Roy J, Minotti S, Dong L, Figlewicz DA, Durham HD. J Neurosci; 1998 Dec 01; 18(23):9673-84. PubMed ID: 9822728 [Abstract] [Full Text] [Related] Page: [Next] [New Search]