These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


465 related items for PubMed ID: 8110795

  • 1. Replacement of the active-site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo.
    Zapun A, Cooper L, Creighton TE.
    Biochemistry; 1994 Feb 22; 33(7):1907-14. PubMed ID: 8110795
    [Abstract] [Full Text] [Related]

  • 2. The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo.
    Zapun A, Bardwell JC, Creighton TE.
    Biochemistry; 1993 May 18; 32(19):5083-92. PubMed ID: 8494885
    [Abstract] [Full Text] [Related]

  • 3. Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo.
    Nelson JW, Creighton TE.
    Biochemistry; 1994 May 17; 33(19):5974-83. PubMed ID: 8180227
    [Abstract] [Full Text] [Related]

  • 4. Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli.
    Zapun A, Missiakas D, Raina S, Creighton TE.
    Biochemistry; 1995 Apr 18; 34(15):5075-89. PubMed ID: 7536035
    [Abstract] [Full Text] [Related]

  • 5. Competition between DsbA-mediated oxidation and conformational folding of RTEM1 beta-lactamase.
    Frech C, Wunderlich M, Glockshuber R, Schmid FX.
    Biochemistry; 1996 Sep 03; 35(35):11386-95. PubMed ID: 8784194
    [Abstract] [Full Text] [Related]

  • 6. Conversion of a catalytic into a structural disulfide bond by circular permutation.
    Hennecke J, Glockshuber R.
    Biochemistry; 1998 Dec 15; 37(50):17590-7. PubMed ID: 9860875
    [Abstract] [Full Text] [Related]

  • 7. Characterization of the active site cysteine residues of the thioredoxin-like domains of protein disulfide isomerase.
    Darby NJ, Creighton TE.
    Biochemistry; 1995 Dec 26; 34(51):16770-80. PubMed ID: 8527452
    [Abstract] [Full Text] [Related]

  • 8. DsbA-mediated disulfide bond formation and catalyzed prolyl isomerization in oxidative protein folding.
    Frech C, Schmid FX.
    J Biol Chem; 1995 Mar 10; 270(10):5367-74. PubMed ID: 7890650
    [Abstract] [Full Text] [Related]

  • 9. Structural analysis of three His32 mutants of DsbA: support for an electrostatic role of His32 in DsbA stability.
    Guddat LW, Bardwell JC, Glockshuber R, Huber-Wunderlich M, Zander T, Martin JL.
    Protein Sci; 1997 Sep 10; 6(9):1893-900. PubMed ID: 9300489
    [Abstract] [Full Text] [Related]

  • 10. Roles of cysteine residues of DsbB in its activity to reoxidize DsbA, the protein disulphide bond catalyst of Escherichia coli.
    Kishigami S, Ito K.
    Genes Cells; 1996 Feb 10; 1(2):201-8. PubMed ID: 9140064
    [Abstract] [Full Text] [Related]

  • 11. A bacterial thioredoxin-like protein that is exposed to the periplasm has redox properties comparable with those of cytoplasmic thioredoxins.
    Loferer H, Wunderlich M, Hennecke H, Glockshuber R.
    J Biol Chem; 1995 Nov 03; 270(44):26178-83. PubMed ID: 7592822
    [Abstract] [Full Text] [Related]

  • 12. Maturation pathway of Escherichia coli heat-stable enterotoxin I: requirement of DsbA for disulfide bond formation.
    Yamanaka H, Kameyama M, Baba T, Fujii Y, Okamoto K.
    J Bacteriol; 1994 May 03; 176(10):2906-13. PubMed ID: 8188592
    [Abstract] [Full Text] [Related]

  • 13. Why is DsbA such an oxidizing disulfide catalyst?
    Grauschopf U, Winther JR, Korber P, Zander T, Dallinger P, Bardwell JC.
    Cell; 1995 Dec 15; 83(6):947-55. PubMed ID: 8521518
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA.
    Guilhot C, Jander G, Martin NL, Beckwith J.
    Proc Natl Acad Sci U S A; 1995 Oct 10; 92(21):9895-9. PubMed ID: 7568240
    [Abstract] [Full Text] [Related]

  • 17. Protein folding activities of Escherichia coli protein disulfide isomerase.
    Joly JC, Swartz JR.
    Biochemistry; 1994 Apr 12; 33(14):4231-6. PubMed ID: 8155639
    [Abstract] [Full Text] [Related]

  • 18. Quenching of tryptophan fluorescence by the active-site disulfide bridge in the DsbA protein from Escherichia coli.
    Hennecke J, Sillen A, Huber-Wunderlich M, Engelborghs Y, Glockshuber R.
    Biochemistry; 1997 May 27; 36(21):6391-400. PubMed ID: 9174355
    [Abstract] [Full Text] [Related]

  • 19. Elimination of all charged residues in the vicinity of the active-site helix of the disulfide oxidoreductase DsbA. Influence of electrostatic interactions on stability and redox properties.
    Jacobi A, Huber-Wunderlich M, Hennecke J, Glockshuber R.
    J Biol Chem; 1997 Aug 29; 272(35):21692-9. PubMed ID: 9268296
    [Abstract] [Full Text] [Related]

  • 20. Differential in vivo roles played by DsbA and DsbC in the formation of protein disulfide bonds.
    Sone M, Akiyama Y, Ito K.
    J Biol Chem; 1997 Apr 18; 272(16):10349-52. PubMed ID: 9099671
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.