These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
156 related items for PubMed ID: 8120005
1. Inhibition of agonist-stimulated inositol 1,4,5-trisphosphate production and calcium signaling by the myosin light chain kinase inhibitor, wortmannin. Nakanishi S, Catt KJ, Balla T. J Biol Chem; 1994 Mar 04; 269(9):6528-35. PubMed ID: 8120005 [Abstract] [Full Text] [Related]
2. Relationship between agonist- and thapsigargin-sensitive calcium pools in adrenal glomerulosa cells. Thapsigargin-induced Ca2+ mobilization and entry. Ely JA, Ambroz C, Baukal AJ, Christensen SB, Balla T, Catt KJ. J Biol Chem; 1991 Oct 05; 266(28):18635-41. PubMed ID: 1917986 [Abstract] [Full Text] [Related]
3. Cation sensitivity of inositol 1,4,5-trisphosphate production and metabolism in agonist-stimulated adrenal glomerulosa cells. Balla T, Nakanishi S, Catt KJ. J Biol Chem; 1994 Jun 10; 269(23):16101-7. PubMed ID: 7515876 [Abstract] [Full Text] [Related]
4. Angiotensin II and guanine nucleotides stimulate formation of inositol 1,4,5-trisphosphate and its metabolites in permeabilized adrenal glomerulosa cells. Baukal AJ, Balla T, Hunyady L, Hausdorff W, Guillemette G, Catt KJ. J Biol Chem; 1988 May 05; 263(13):6087-92. PubMed ID: 3283118 [Abstract] [Full Text] [Related]
5. Agonist-induced endocytosis and signal generation in adrenal glomerulosa cells. A potential mechanism for receptor-operated calcium entry. Hunyady L, Merelli F, Baukal AJ, Balla T, Catt KJ. J Biol Chem; 1991 Feb 15; 266(5):2783-8. PubMed ID: 1993657 [Abstract] [Full Text] [Related]
6. Wortmannin-sensitive and -insensitive steps in calcium-controlled exocytosis in pituitary gonadotrophs: evidence that myosin light chain kinase mediates calcium-dependent and wortmannin-sensitive gonadotropin secretion. Rao K, Paik WY, Zheng L, Jobin RM, Tomić M, Jiang H, Nakanishi S, Stojilkovic SS. Endocrinology; 1997 Apr 15; 138(4):1440-9. PubMed ID: 9075700 [Abstract] [Full Text] [Related]
7. Stimulation of early gene expression by angiotensin II in bovine adrenal glomerulosa cells: roles of calcium and protein kinase C. Clark AJ, Balla T, Jones MR, Catt KJ. Mol Endocrinol; 1992 Nov 15; 6(11):1889-98. PubMed ID: 1336125 [Abstract] [Full Text] [Related]
8. Enhancement of the inositol 1,4,5-trisphosphate-releasable Ca2+ pool by GTP in permeabilized hepatocytes. Thomas AP. J Biol Chem; 1988 Feb 25; 263(6):2704-11. PubMed ID: 3277959 [Abstract] [Full Text] [Related]
9. Dissociation of Ca2+ entry and Ca2+ mobilization responses to angiotensin II in bovine adrenal chromaffin cells. Stauderman KA, Pruss RM. J Biol Chem; 1989 Nov 05; 264(31):18349-55. PubMed ID: 2509455 [Abstract] [Full Text] [Related]
10. Agonist-induced regulation of inositol tetrakisphosphate isomers and inositol pentakisphosphate in adrenal glomerulosa cells. Balla T, Baukal AJ, Hunyady L, Catt KJ. J Biol Chem; 1989 Aug 15; 264(23):13605-11. PubMed ID: 2547768 [Abstract] [Full Text] [Related]
11. Contrasting effects of phorbol ester and agonist-mediated activation of protein kinase C on phosphoinositide and Ca2+ signalling in a human neuroblastoma. Willars GB, Challiss RA, Stuart JA, Nahorski SR. Biochem J; 1996 Jun 15; 316 ( Pt 3)(Pt 3):905-13. PubMed ID: 8670170 [Abstract] [Full Text] [Related]
12. Inositol polyphosphate production and regulation of cytosolic calcium during the biphasic activation of adrenal glomerulosa cells by angiotensin II. Balla T, Hausdorff WP, Baukal AJ, Catt KJ. Arch Biochem Biophys; 1989 Apr 15; 270(1):398-403. PubMed ID: 2930197 [Abstract] [Full Text] [Related]
13. Control of glomerulosa cell function by angiotensin II: transduction by G-proteins and inositol polyphosphates. Catt KJ, Balla T, Baukal AJ, Hausdorff WP, Aguilera G. Clin Exp Pharmacol Physiol; 1988 Jul 15; 15(7):501-15. PubMed ID: 3152162 [Abstract] [Full Text] [Related]
14. Evidence for the involvement of a small subregion of the endoplasmic reticulum in the inositol trisphosphate receptor-induced activation of Ca2+ inflow in rat hepatocytes. Gregory RB, Wilcox RA, Berven LA, van Straten NC, van der Marel GA, van Boom JH, Barritt GJ. Biochem J; 1999 Jul 15; 341 ( Pt 2)(Pt 2):401-8. PubMed ID: 10393099 [Abstract] [Full Text] [Related]
15. Ca2+ release from platelet intracellular stores by thapsigargin and 2,5-di-(t-butyl)-1,4-benzohydroquinone: relationship to Ca2+ pools and relevance in platelet activation. Authi KS, Bokkala S, Patel Y, Kakkar VV, Munkonge F. Biochem J; 1993 Aug 15; 294 ( Pt 1)(Pt 1):119-26. PubMed ID: 8363562 [Abstract] [Full Text] [Related]
16. Intercellular communication between follicular angiotensin receptors and Xenopus laevis oocytes: medication by an inositol 1,4,5-trisphosphate-dependent mechanism. Sandberg K, Ji H, Iida T, Catt KJ. J Cell Biol; 1992 Apr 15; 117(1):157-67. PubMed ID: 1556150 [Abstract] [Full Text] [Related]
17. Activation of dihydropyridine-sensitive calcium channels and biphasic cytosolic calcium responses by angiotensin II in rat adrenal glomerulosa cells. Hausdorff WP, Catt KJ. Endocrinology; 1988 Dec 15; 123(6):2818-26. PubMed ID: 2461852 [Abstract] [Full Text] [Related]
18. Regulation of angiotensin II-stimulated Ca2+ oscillations by Ca2+ influx mechanisms in adrenal glomerulosa cells. Rössig L, Zólyomi A, Catt KJ, Balla T. J Biol Chem; 1996 Sep 06; 271(36):22063-9. PubMed ID: 8703014 [Abstract] [Full Text] [Related]