These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
714 related items for PubMed ID: 8125002
1. In vivo 31P nuclear magnetic resonance spectroscopy of skeletal muscle energetics in endotoxemic rats: a prospective, randomized study. Gilles RJ, D'Orio V, Ciancabilla F, Carlier PG. Crit Care Med; 1994 Mar; 22(3):499-505. PubMed ID: 8125002 [Abstract] [Full Text] [Related]
2. Beneficial effects of L-canavanine, a selective inhibitor of inducible nitric oxide synthase, on lactate metabolism and muscle high energy phosphates during endotoxic shock in rats. Levy B, Valtier M, de Chillou C, Bollaert PE, Cane D, Mallie JP. Shock; 1999 Feb; 11(2):98-103. PubMed ID: 10030795 [Abstract] [Full Text] [Related]
3. Correlation of function and energy metabolism in rat ischemic skeletal muscle by 31P-NMR spectroscopy: effects of torbafylline. Koch H, Okyayuz-Baklouti I, Norris D, Kogler H, Leibfritz D. J Med; 1993 Feb; 24(1):47-66. PubMed ID: 8501403 [Abstract] [Full Text] [Related]
4. Examination of the energetics of aging skeletal muscle using nuclear magnetic resonance. Taylor DJ, Crowe M, Bore PJ, Styles P, Arnold DL, Radda GK. Gerontology; 1984 Feb; 30(1):2-7. PubMed ID: 6698405 [Abstract] [Full Text] [Related]
5. Phosphorus metabolites in different muscles of the rat leg by 31P image-selected in vivo spectroscopy. Madhu B, Lagerwall K, Soussi B. NMR Biomed; 1996 Dec; 9(8):327-32. PubMed ID: 9176886 [Abstract] [Full Text] [Related]
6. NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline) did not affect recovery of high energy phosphates and pH in early reperfusion in a rat model of transient forebrain ischemia. Or: an in vivo 31P NMR spectroscopy study. Müller TB, Haraldseth O, Sonnewald U, Unsgård G, Petersen SB. Acta Anaesthesiol Scand; 1994 Feb; 38(2):170-4. PubMed ID: 8171953 [Abstract] [Full Text] [Related]
7. Sequential in vivo measurement of cerebral intracellular metabolites with phosphorus-31 magnetic resonance spectroscopy during global cerebral ischemia and reperfusion in rats. Andrews BT, Weinstein PR, Keniry M, Pereira B. Neurosurgery; 1987 Nov; 21(5):699-708. PubMed ID: 3696405 [Abstract] [Full Text] [Related]
8. Heterogeneous metabolic changes in the calf muscle of the rat during ischaemia-reperfusion: in vivo analysis by 31P nuclear magnetic resonance chemical shift imaging and 1H magnetic resonance imaging. Morikawa S, Inubushi T, Kito K. Cardiovasc Surg; 1993 Aug; 1(4):337-42. PubMed ID: 8076056 [Abstract] [Full Text] [Related]
9. Skeletal muscle metabolism in the chronic fatigue syndrome. In vivo assessment by 31P nuclear magnetic resonance spectroscopy. Wong R, Lopaschuk G, Zhu G, Walker D, Catellier D, Burton D, Teo K, Collins-Nakai R, Montague T. Chest; 1992 Dec; 102(6):1716-22. PubMed ID: 1446478 [Abstract] [Full Text] [Related]
10. Effect of acetyl-L-carnitine on recovery of brain phosphorus metabolites and lactic acid level during reperfusion after cerebral ischemia in the rat--study by 13P- and 1H-NMR spectroscopy. Aureli T, Miccheli A, Di Cocco ME, Ghirardi O, Giuliani A, Ramacci MT, Conti F. Brain Res; 1994 Apr 18; 643(1-2):92-9. PubMed ID: 8032936 [Abstract] [Full Text] [Related]
11. In vivo phosphorus 31 magnetic resonance spectroscopy of rat hind limb skeletal muscle during sepsis. Jacobs DO, Maris J, Fried R, Settle RG, Rolandelli RR, Koruda MJ, Chance B, Rombeau JL. Arch Surg; 1988 Nov 18; 123(11):1425-8. PubMed ID: 3178491 [Abstract] [Full Text] [Related]
12. Effect of hyperglycemia on reperfusion-associated recovery of intracellular pH and high energy phosphates after transient cerebral ischemia in gerbils. Dempsey RJ, Başkaya MK, Combs DJ, Donaldson D, Rao AM, Prasad MR. Neurol Res; 1996 Dec 18; 18(6):546-52. PubMed ID: 8985956 [Abstract] [Full Text] [Related]
13. Graded global ischaemia and reperfusion of the isolated perfused rat heart: characterisation by 31P NMR spectroscopy of the extent of energy metabolism damage. Lavanchy N, Martin J, Rossi A. Cardiovasc Res; 1984 Sep 18; 18(9):573-82. PubMed ID: 6467274 [Abstract] [Full Text] [Related]
14. Mapping of metabolites in whole animals by 31P NMR using surface coils. Ackerman JJ, Grove TH, Wong GG, Gadian DG, Radda GK. Nature; 1980 Jan 10; 283(5743):167-70. PubMed ID: 7350541 [Abstract] [Full Text] [Related]
15. Phosphagen and intracellular pH changes during contraction of creatine-depleted rat muscle. Meyer RA, Brown TR, Krilowicz BL, Kushmerick MJ. Am J Physiol; 1986 Feb 10; 250(2 Pt 1):C264-74. PubMed ID: 3953780 [Abstract] [Full Text] [Related]
16. In vivo alterations of high-energy phosphates and intracellular pH during reversible ischemia in pigs: a 31P magnetic resonance spectroscopy study. Camacho SA, Lanzer P, Toy BJ, Gober J, Valenza M, Botvinick EH, Weiner MW. Am Heart J; 1988 Sep 10; 116(3):701-8. PubMed ID: 3414485 [Abstract] [Full Text] [Related]
17. Effects of crossclamping the descending aorta on the high-energy phosphates of myocardium and skeletal muscle. A phosphorus 31-nuclear magnetic resonance study. Balschi JA, Henderson T, Bradley EL, Gelman S. J Thorac Cardiovasc Surg; 1993 Aug 10; 106(2):346-56. PubMed ID: 8341075 [Abstract] [Full Text] [Related]
18. Phosphorus-31 nuclear magnetic resonance study on the effects of endurance training in rat skeletal muscle. Kuno SY, Akisada M, Mitsumori F. Eur J Appl Physiol Occup Physiol; 1992 Aug 10; 65(2):197-201. PubMed ID: 1396645 [Abstract] [Full Text] [Related]