These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


135 related items for PubMed ID: 8125501

  • 1. On-line determination of pulmonary blood flow using respiratory inert gas analysis.
    Gan K, Nishi I, Chin I, Slutsky AS.
    IEEE Trans Biomed Eng; 1993 Dec; 40(12):1250-9. PubMed ID: 8125501
    [Abstract] [Full Text] [Related]

  • 2. [Pulmonary blood flow measurement by acetylene rebreathing method in subjects without respiratory function disturbance].
    Ichinose Y, Torii Y, Yonemaru M, Utsumi K, Minemura K, Kasuga I, Toyama K, Nishi I.
    Nihon Kyobu Shikkan Gakkai Zasshi; 1992 Nov; 30(11):1917-22. PubMed ID: 1484429
    [Abstract] [Full Text] [Related]

  • 3. [Determination of pulmonary blood flow by acetylene rebreathing method in patients with chronic respiratory disease].
    Ichinose Y, Torii Y, Yonemaru M, Utsumi K, Minemura K, Kasuga I, Toyama K, Ishii H, Nishi I.
    Nihon Kyobu Shikkan Gakkai Zasshi; 1993 Jun; 31(6):712-6. PubMed ID: 8345704
    [Abstract] [Full Text] [Related]

  • 4. Nonlinear curve fitting improves noise sensitivity of the single-breath method for estimation of cardiac output.
    Christensen P, Nielsen OW, Grønlund J.
    Aviat Space Environ Med; 1989 Aug; 60(8):803-6. PubMed ID: 2505745
    [Abstract] [Full Text] [Related]

  • 5. Gas exchange measurements with high temporal resolution: the breath-by-breath approach.
    Roecker K, Prettin S, Sorichter S.
    Int J Sports Med; 2005 Feb; 26 Suppl 1():S11-8. PubMed ID: 15702451
    [Abstract] [Full Text] [Related]

  • 6. Computerized breath-by-breath analysis of respiratory variables during exercise.
    Salminen R, Aunola S, Mälkiä E, Vuori I.
    Med Prog Technol; 1982 Feb; 9(1):27-32. PubMed ID: 7132925
    [Abstract] [Full Text] [Related]

  • 7. Pulmonary blood flow determined by continuous analysis of pulmonary N2O exchange.
    Stout RL, Wessel HU, Paul MH.
    J Appl Physiol; 1975 May; 38(5):913-8. PubMed ID: 1126902
    [Abstract] [Full Text] [Related]

  • 8. Real time mathematical analysis of instantaneous respiratory signals at the bedside by a multiprocessor system (PAMS).
    Grevisse P, Picart P, Swietochowski A, Demeester M.
    Acta Anaesthesiol Belg; 1984 May; 35(4):313-28. PubMed ID: 6532074
    [Abstract] [Full Text] [Related]

  • 9. An IBM PC-based system for the assessment of cardio-respiratory function using oscillating inert gas forcing signals.
    Wong LS, Williams EM, Hamilton R, Hahn CE.
    J Clin Monit Comput; 2000 Jan; 16(1):33-43. PubMed ID: 12578093
    [Abstract] [Full Text] [Related]

  • 10. Inert gas rebreathing: the effect of haemoglobin based pulmonary shunt flow correction on the accuracy of cardiac output measurements in clinical practice.
    Trinkmann F, Papavassiliu T, Kraus F, Leweling H, Schoenberg SO, Borggrefe M, Kaden JJ, Saur J.
    Clin Physiol Funct Imaging; 2009 Jul; 29(4):255-62. PubMed ID: 19302227
    [Abstract] [Full Text] [Related]

  • 11. A comparison of micropore membrane inlet mass spectrometry-derived pulmonary shunt measurement with Riley shunt in a porcine model.
    Duenges B, Vogt A, Bodenstein M, Wang H, Böhme S, Röhrig B, Baumgardner JE, Markstaller K.
    Anesth Analg; 2009 Dec; 109(6):1831-5. PubMed ID: 19923510
    [Abstract] [Full Text] [Related]

  • 12. Performance of the partial CO2 rebreathing technique under different hemodynamic and ventilation/perfusion matching conditions.
    Gama de Abreu M, Winkler T, Pahlitzsch T, Weismann D, Albrecht DM.
    Crit Care Med; 2003 Feb; 31(2):543-51. PubMed ID: 12576964
    [Abstract] [Full Text] [Related]

  • 13. Non-invasive measurement of intrapulmonary shunt during inert gas rebreathing.
    Peyton PJ, Poustie SJ, Robinson GJ, Penny DJ, Thompson B.
    Physiol Meas; 2005 Jun; 26(3):309-16. PubMed ID: 15798304
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Validation and clinical application of a continuous P0.1 measurement using standard respiratory equipment.
    Kuhlen R, Mohnhaupt R, Slama K, Hausmann S, Pappert D, Rossaint R, Falke K.
    Technol Health Care; 1996 Dec; 4(4):415-24. PubMed ID: 9042692
    [Abstract] [Full Text] [Related]

  • 16. Pulmonary capillary blood flow and cardiac output measurement by partial carbon dioxide rebreathing in patients with acute respiratory distress syndrome receiving lung protective ventilation.
    Allardet-Servent J, Forel JM, Roch A, Chiche L, Guervilly C, Bouzana F, Vincent A, Gainnier M, Loundou A, Papazian L.
    Anesthesiology; 2009 Nov; 111(5):1085-92. PubMed ID: 19809287
    [Abstract] [Full Text] [Related]

  • 17. A mathematical evaluation of the multiple breath nitrogen washout (MBNW) technique and the multiple inert gas elimination technique (MIGET).
    Whiteley JP, Gavaghan DJ, Hahn CE.
    J Theor Biol; 1998 Oct 21; 194(4):517-39. PubMed ID: 9790827
    [Abstract] [Full Text] [Related]

  • 18. Heat and mass transfer of a thermal indicator in pulsatile flow through the cardio-pulmonary system. II. Identification of cardiac output.
    Cassot F, Saadjian A, McKay C.
    Med Prog Technol; 1978 May 23; 5(4):215-222. PubMed ID: 672825
    [Abstract] [Full Text] [Related]

  • 19. Continuous measurement of cardiac output by inert gas throughflow: comparison with thermodilution.
    Robinson GJ, Peyton PJ, Vartuli GM, Burfoot RB, Junor PA.
    J Cardiothorac Vasc Anesth; 2003 Apr 23; 17(2):204-10. PubMed ID: 12698403
    [Abstract] [Full Text] [Related]

  • 20. The effect of incomplete acetylene washout on cardiac output measurement using open circuit acetylene uptake.
    Balouch J, Olfert IM, Wagner PD, Hopkins SR.
    Respir Physiol Neurobiol; 2007 Feb 15; 155(2):177-83. PubMed ID: 16714151
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.