These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
221 related items for PubMed ID: 8125759
1. High glucose downregulates glucose transport activity in retinal capillary pericytes but not endothelial cells. Mandarino LJ, Finlayson J, Hassell JR. Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):964-72. PubMed ID: 8125759 [Abstract] [Full Text] [Related]
2. Enhancement of glucose transport by vascular endothelial growth factor in retinal endothelial cells. Sone H, Deo BK, Kumagai AK. Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1876-84. PubMed ID: 10845612 [Abstract] [Full Text] [Related]
3. Expression of apoptosis regulatory genes by retinal pericytes after rapid glucose reduction. Li W, Liu X, He Z, Yanoff M, Jian B, Ye X. Invest Ophthalmol Vis Sci; 1998 Aug; 39(9):1535-43. PubMed ID: 9699542 [Abstract] [Full Text] [Related]
4. Downregulation of retinal GLUT1 in diabetes by ubiquitinylation. Fernandes R, Carvalho AL, Kumagai A, Seica R, Hosoya K, Terasaki T, Murta J, Pereira P, Faro C. Mol Vis; 2004 Aug 30; 10():618-28. PubMed ID: 15359219 [Abstract] [Full Text] [Related]
5. Glucose-induced activation of glucose uptake in cells from the inner and outer blood-retinal barrier. Busik JV, Olson LK, Grant MB, Henry DN. Invest Ophthalmol Vis Sci; 2002 Jul 30; 43(7):2356-63. PubMed ID: 12091438 [Abstract] [Full Text] [Related]
6. The glucose transporter in the plasma membrane of the outer segments of bovine retinal rods. Li XB, Szerencsei RT, Schnetkamp PP. Exp Eye Res; 1994 Sep 30; 59(3):351-8. PubMed ID: 7821380 [Abstract] [Full Text] [Related]
7. Growth of bovine retinal pericytes and endothelial cells in high hexose concentrations. Porta M, Molinatti PA, Dosso AA, Williams FM, Brooks RA, Kohner EM. Diabete Metab; 1994 Sep 30; 20(1):25-30. PubMed ID: 8056131 [Abstract] [Full Text] [Related]
8. Divergent mechanisms for the insulin resistant and hyperresponsive glucose transport in adipose cells from fasted and refed rats. Alterations in both glucose transporter number and intrinsic activity. Kahn BB, Simpson IA, Cushman SW. J Clin Invest; 1988 Aug 30; 82(2):691-9. PubMed ID: 3403723 [Abstract] [Full Text] [Related]
9. Human erythrocyte sugar transport is incompatible with available carrier models. Cloherty EK, Heard KS, Carruthers A. Biochemistry; 1996 Aug 13; 35(32):10411-21. PubMed ID: 8756697 [Abstract] [Full Text] [Related]
10. Differential glucose uptake in retina- and brain-derived endothelial cells. Rajah TT, Olson AL, Grammas P. Microvasc Res; 2001 Nov 13; 62(3):236-42. PubMed ID: 11678626 [Abstract] [Full Text] [Related]
11. Genistein inhibits insulin-stimulated glucose transport and decreases immunocytochemical labeling of GLUT4 carboxyl-terminus without affecting translocation of GLUT4 in isolated rat adipocytes: additional evidence of GLUT4 activation by insulin. Smith RM, Tiesinga JJ, Shah N, Smith JA, Jarett L. Arch Biochem Biophys; 1993 Jan 13; 300(1):238-46. PubMed ID: 8424658 [Abstract] [Full Text] [Related]
12. Intracellular protein glycation in cultured retinal capillary pericytes and endothelial cells exposed to high-glucose concentration. Chibber R, Molinatti PA, Kohner EM. Cell Mol Biol (Noisy-le-grand); 1999 Feb 13; 45(1):47-57. PubMed ID: 10099839 [Abstract] [Full Text] [Related]
13. Role of the polyol pathway in high glucose-induced apoptosis of retinal pericytes and proliferation of endothelial cells. Takamura Y, Tomomatsu T, Kubo E, Tsuzuki S, Akagi Y. Invest Ophthalmol Vis Sci; 2008 Jul 13; 49(7):3216-23. PubMed ID: 18362110 [Abstract] [Full Text] [Related]
14. Polyol formation and NADPH-dependent reductases in dog retinal capillary pericytes and endothelial cells. Sato S, Secchi EF, Lizak MJ, Fukase S, Ohta N, Murata M, Tsai JY, Kador PF. Invest Ophthalmol Vis Sci; 1999 Mar 13; 40(3):697-704. PubMed ID: 10067973 [Abstract] [Full Text] [Related]
15. [Changes of reactive oxygen species in mitochondria of retinal endothelial cells and pericytes induced by high glucose]. Cui Y, Xu X, Bi HS. Zhonghua Yan Ke Za Zhi; 2006 Feb 13; 42(2):131-8. PubMed ID: 16643728 [Abstract] [Full Text] [Related]
16. Aminoguanidine and the effects of modified LDL on cultured retinal capillary cells. Lyons TJ, Li W, Wojciechowski B, Wells-Knecht MC, Wells-Knecht KJ, Jenkins AJ. Invest Ophthalmol Vis Sci; 2000 Apr 13; 41(5):1176-80. PubMed ID: 10752957 [Abstract] [Full Text] [Related]
17. Cell-associated proteoglycans of retinal pericytes and endothelial cells: modulation by glucose and ascorbic acid. Fisher EJ, McLennan SV, Yue DK, Turtle JR. Microvasc Res; 1994 Sep 13; 48(2):179-89. PubMed ID: 7854204 [Abstract] [Full Text] [Related]
18. Hypoxia regulates vascular endothelial growth factor receptor KDR/Flk gene expression through adenosine A2 receptors in retinal capillary endothelial cells. Takagi H, King GL, Ferrara N, Aiello LP. Invest Ophthalmol Vis Sci; 1996 Jun 13; 37(7):1311-21. PubMed ID: 8641834 [Abstract] [Full Text] [Related]
19. GLUT-1 expression in bovine retinal capillary endothelial cells and pericytes exposed to advanced glycation end products. Barathi S, Angayarkanni N, Sumantran VN. Invest Ophthalmol Vis Sci; 2010 Dec 13; 51(12):6810-4. PubMed ID: 20702825 [Abstract] [Full Text] [Related]
20. Characterization of glucose transport by bovine retinal capillary pericytes in culture. Li W, Chan LS, Khatami M, Rockey JH. Exp Eye Res; 1985 Aug 13; 41(2):191-9. PubMed ID: 3905422 [Abstract] [Full Text] [Related] Page: [Next] [New Search]