These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
485 related items for PubMed ID: 8126064
1. Requirement for receptor-bound urokinase in plasmin-dependent cellular conversion of latent TGF-beta to TGF-beta. Odekon LE, Blasi F, Rifkin DB. J Cell Physiol; 1994 Mar; 158(3):398-407. PubMed ID: 8126064 [Abstract] [Full Text] [Related]
2. THP-1 macrophage membrane-bound plasmin activity is up-regulated by transforming growth factor-beta 1 via increased expression of urokinase and the urokinase receptor. Falcone DJ, McCaffrey TA, Mathew J, McAdam K, Borth W. J Cell Physiol; 1995 Aug; 164(2):334-43. PubMed ID: 7622580 [Abstract] [Full Text] [Related]
3. Plasminogen-dependent activation of latent transforming growth factor beta (TGF beta) by growing cultures of osteoblast-like cells. Yee JA, Yan L, Dominguez JC, Allan EH, Martin TJ. J Cell Physiol; 1993 Dec; 157(3):528-34. PubMed ID: 8253864 [Abstract] [Full Text] [Related]
4. Cellular response to latent TGF-beta1 is facilitated by insulin-like growth factor-II/mannose-6-phosphate receptors on MS-9 cells. Ghahary A, Tredget EE, Mi L, Yang L. Exp Cell Res; 1999 Aug 25; 251(1):111-20. PubMed ID: 10438576 [Abstract] [Full Text] [Related]
5. Mechanism of retinoid-induced activation of latent transforming growth factor-beta in bovine endothelial cells. Kojima S, Rifkin DB. J Cell Physiol; 1993 May 25; 155(2):323-32. PubMed ID: 8482724 [Abstract] [Full Text] [Related]
6. Characterization of latent TGF-beta activation by murine peritoneal macrophages. Nunes I, Shapiro RL, Rifkin DB. J Immunol; 1995 Aug 01; 155(3):1450-9. PubMed ID: 7636210 [Abstract] [Full Text] [Related]
7. Urokinase-type plasminogen activator mediates basic fibroblast growth factor-induced bovine endothelial cell migration independent of its proteolytic activity. Odekon LE, Sato Y, Rifkin DB. J Cell Physiol; 1992 Feb 01; 150(2):258-63. PubMed ID: 1734031 [Abstract] [Full Text] [Related]
8. Defective processing of the transforming growth factor-beta1 in azoxymethane-induced mouse colon tumors. Guda K, Claffey KP, Dong M, Nambiar PR, Rosenberg DW. Mol Carcinog; 2003 May 01; 37(1):51-9. PubMed ID: 12720300 [Abstract] [Full Text] [Related]
9. Transforming growth factor beta inhibits plasminogen activator (PA) activity and stimulates production of urokinase-type PA, PA inhibitor-1 mRNA, and protein in rat osteoblast-like cells. Allan EH, Zeheb R, Gelehrter TD, Heaton JH, Fukumoto S, Yee JA, Martin TJ. J Cell Physiol; 1991 Oct 01; 149(1):34-43. PubMed ID: 1834680 [Abstract] [Full Text] [Related]
10. Insulin-like growth factor-II/mannose 6 phosphate receptors facilitate the matrix effects of latent transforming growth factor-beta1 released from genetically modified keratinocytes in a fibroblast/keratinocyte co-culture system. Ghahary A, Tredget EE, Shen Q. J Cell Physiol; 1999 Jul 01; 180(1):61-70. PubMed ID: 10362018 [Abstract] [Full Text] [Related]
11. Production of second messengers following chemotactic and mitogenic urokinase-receptor interaction in human fibroblasts and mouse fibroblasts transfected with human urokinase receptor. Anichini E, Fibbi G, Pucci M, Caldini R, Chevanne M, Del Rosso M. Exp Cell Res; 1994 Aug 01; 213(2):438-48. PubMed ID: 8050501 [Abstract] [Full Text] [Related]
12. Presence of urokinase in serum-free primary rat hepatocyte cultures and its role in activating hepatocyte growth factor. Mars WM, Kim TH, Stolz DB, Liu ML, Michalopoulos GK. Cancer Res; 1996 Jun 15; 56(12):2837-43. PubMed ID: 8665523 [Abstract] [Full Text] [Related]
13. Cranial neural crest cells synthesize and secrete a latent form of transforming growth factor beta that can be activated by neural crest cell proteolysis. Brauer PR, Yee JA. Dev Biol; 1993 Jan 15; 155(1):281-5. PubMed ID: 8416842 [Abstract] [Full Text] [Related]
14. Retinoids potentiate transforming growth factor-beta activity in bovine endothelial cells through up-regulating the expression of transforming growth factor-beta receptors. Yoshizawa M, Miyazaki H, Kojima S. J Cell Physiol; 1998 Sep 15; 176(3):565-73. PubMed ID: 9699509 [Abstract] [Full Text] [Related]
15. Transforming growth factor-beta 1 stimulates macrophage urokinase expression and release of matrix-bound basic fibroblast growth factor. Falcone DJ, McCaffrey TA, Haimovitz-Friedman A, Garcia M. J Cell Physiol; 1993 Jun 15; 155(3):595-605. PubMed ID: 7684044 [Abstract] [Full Text] [Related]
16. Requirement of TGF-beta receptor-dependent activation of c-Jun N-terminal kinases (JNKs)/stress-activated protein kinases (Sapks) for TGF-beta up-regulation of the urokinase-type plasminogen activator receptor. Yue J, Sun B, Liu G, Mulder KM. J Cell Physiol; 2004 May 15; 199(2):284-92. PubMed ID: 15040011 [Abstract] [Full Text] [Related]
17. Proteolytic activation of latent TGF-beta precedes caspase-3 activation and enhances apoptotic death of lung epithelial cells. Solovyan VT, Keski-Oja J. J Cell Physiol; 2006 May 15; 207(2):445-53. PubMed ID: 16447253 [Abstract] [Full Text] [Related]
18. Secretion of transforming growth factor-beta isoforms by embryonic stem cells: isoform and latency are dependent on direction of differentiation. Slager HG, Freund E, Buiting AM, Feijen A, Mummery CL. J Cell Physiol; 1993 Aug 15; 156(2):247-56. PubMed ID: 8344983 [Abstract] [Full Text] [Related]
19. The effect of thrombospondin-1 and TGF-beta 1 on pancreatic cancer cell invasion. Albo D, Berger DH, Tuszynski GP. J Surg Res; 1998 Apr 15; 76(1):86-90. PubMed ID: 9695745 [Abstract] [Full Text] [Related]
20. Angiostatic role of astrocytes: suppression of vascular endothelial cell growth by TGF-beta and other inhibitory factor(s). Behzadian MA, Wang XL, Jiang B, Caldwell RB. Glia; 1995 Dec 15; 15(4):480-90. PubMed ID: 8926041 [Abstract] [Full Text] [Related] Page: [Next] [New Search]