These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
239 related items for PubMed ID: 8132469
1. Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression. Kraus A, Hueck C, Gärtner D, Hillen W. J Bacteriol; 1994 Mar; 176(6):1738-45. PubMed ID: 8132469 [Abstract] [Full Text] [Related]
2. Catabolite repression of the xyl operon in Bacillus megaterium. Rygus T, Hillen W. J Bacteriol; 1992 May; 174(9):3049-55. PubMed ID: 1569031 [Abstract] [Full Text] [Related]
3. Contributions of XylR CcpA and cre to diauxic growth of Bacillus megaterium and to xylose isomerase expression in the presence of glucose and xylose. Schmiedel D, Hillen W. Mol Gen Genet; 1996 Feb 25; 250(3):259-66. PubMed ID: 8602140 [Abstract] [Full Text] [Related]
4. Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame. Jacob S, Allmansberger R, Gärtner D, Hillen W. Mol Gen Genet; 1991 Oct 25; 229(2):189-96. PubMed ID: 1921970 [Abstract] [Full Text] [Related]
7. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization. Rygus T, Scheler A, Allmansberger R, Hillen W. Arch Microbiol; 1991 Oct 25; 155(6):535-42. PubMed ID: 1719948 [Abstract] [Full Text] [Related]
8. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. Wray LV, Pettengill FK, Fisher SH. J Bacteriol; 1994 Apr 25; 176(7):1894-902. PubMed ID: 8144455 [Abstract] [Full Text] [Related]
9. Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements. Miwa Y, Nagura K, Eguchi S, Fukuda H, Deutscher J, Fujita Y. Mol Microbiol; 1997 Mar 25; 23(6):1203-13. PubMed ID: 9106211 [Abstract] [Full Text] [Related]
11. Regulation of expression, genetic organization and substrate specificity of xylose uptake in Bacillus megaterium. Schmiedel D, Kintrup M, Küster E, Hillen W. Mol Microbiol; 1997 Mar 25; 23(5):1053-62. PubMed ID: 9076741 [Abstract] [Full Text] [Related]
13. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. Martin-Verstraete I, Stülke J, Klier A, Rapoport G. J Bacteriol; 1995 Dec 25; 177(23):6919-27. PubMed ID: 7592486 [Abstract] [Full Text] [Related]
16. Organization and characterization of three genes involved in D-xylose catabolism in Lactobacillus pentosus. Lokman BC, van Santen P, Verdoes JC, Krüse J, Leer RJ, Posno M, Pouwels PH. Mol Gen Genet; 1991 Nov 25; 230(1-2):161-9. PubMed ID: 1660563 [Abstract] [Full Text] [Related]
18. A promoter-screening plasmid and xylose-inducible, glucose-repressible expression vectors for Staphylococcus carnosus. Wieland KP, Wieland B, Götz F. Gene; 1995 May 26; 158(1):91-6. PubMed ID: 7789818 [Abstract] [Full Text] [Related]
19. Regulation of expression of the Lactobacillus pentosus xylAB operon. Lokman BC, Heerikhuisen M, Leer RJ, van den Broek A, Borsboom Y, Chaillou S, Postma PW, Pouwels PH. J Bacteriol; 1997 Sep 26; 179(17):5391-7. PubMed ID: 9286992 [Abstract] [Full Text] [Related]
20. Determination of the cis sequence involved in catabolite repression of the Bacillus subtilis gnt operon; implication of a consensus sequence in catabolite repression in the genus Bacillus. Miwa Y, Fujita Y. Nucleic Acids Res; 1990 Dec 11; 18(23):7049-53. PubMed ID: 2124676 [Abstract] [Full Text] [Related] Page: [Next] [New Search]