These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


239 related items for PubMed ID: 8132469

  • 21. Molecular cloning and characterization of the xylose isomerase gene from a thermophilic Bacillus species.
    Liao WX, Earnest L, Kok SL, Jeyaseelan K.
    Biochem Mol Biol Int; 1995 Jun; 36(2):401-10. PubMed ID: 7663444
    [Abstract] [Full Text] [Related]

  • 22. Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis.
    Inácio JM, Costa C, de Sá-Nogueira I.
    Microbiology (Reading); 2003 Sep; 149(Pt 9):2345-2355. PubMed ID: 12949161
    [Abstract] [Full Text] [Related]

  • 23. Glucose and glucose-6-phosphate interaction with Xyl repressor proteins from Bacillus spp. may contribute to regulation of xylose utilization.
    Dahl MK, Schmiedel D, Hillen W.
    J Bacteriol; 1995 Oct; 177(19):5467-72. PubMed ID: 7559331
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Catabolite repression of dra-nupC-pdp operon expression in Bacillus subtilis.
    Zeng X, Galinier A, Saxild HH.
    Microbiology (Reading); 2000 Nov; 146 ( Pt 11)():2901-2908. PubMed ID: 11065368
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Promoter analysis and transcriptional regulation of Lactobacillus pentosus genes involved in xylose catabolism.
    Lokman BC, Leer RJ, van Sorge R, Pouwels PH.
    Mol Gen Genet; 1994 Oct 17; 245(1):117-25. PubMed ID: 7845354
    [Abstract] [Full Text] [Related]

  • 28. Transcription of the xyl operon is controlled in Bacillus subtilis by tandem overlapping operators spaced by four base-pairs.
    Dahl MK, Degenkolb J, Hillen W.
    J Mol Biol; 1994 Oct 28; 243(3):413-24. PubMed ID: 7966270
    [Abstract] [Full Text] [Related]

  • 29. Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis.
    Hirooka K, Kodoi Y, Satomura T, Fujita Y.
    J Bacteriol; 2015 Dec 28; 198(5):830-45. PubMed ID: 26712933
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase.
    Walfridsson M, Bao X, Anderlund M, Lilius G, Bülow L, Hahn-Hägerdal B.
    Appl Environ Microbiol; 1996 Dec 28; 62(12):4648-51. PubMed ID: 8953736
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Nucleotide sequence of the Bacillus subtilis xylose isomerase gene: extensive homology between the Bacillus and Escherichia coli enzyme.
    Wilhelm M, Hollenberg CP.
    Nucleic Acids Res; 1985 Aug 12; 13(15):5717-22. PubMed ID: 2994009
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Promoter-independent catabolite repression of the Bacillus subtilis gnt operon.
    Miwa Y, Fujita Y.
    J Biochem; 1993 Jun 12; 113(6):665-71. PubMed ID: 8370661
    [Abstract] [Full Text] [Related]

  • 36. Catabolite regulation of the cytochrome c550-encoding Bacillus subtilis cccA gene.
    Monedero V, Boël G, Deutscher J.
    J Mol Microbiol Biotechnol; 2001 Jul 12; 3(3):433-8. PubMed ID: 11361075
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.