These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


186 related items for PubMed ID: 8135734

  • 1. Probing the function(s) of active-site arginine residue in Leishmania donovani adenosine kinase.
    Ghosh M, Datta AK.
    Biochem J; 1994 Mar 01; 298 ( Pt 2)(Pt 2):295-301. PubMed ID: 8135734
    [Abstract] [Full Text] [Related]

  • 2. Two conformationally vicinal thiols at the active site of Leishmania donovani adenosine kinase.
    Bagui TK, Ghosh M, Datta AK.
    Biochem J; 1996 Jun 01; 316 ( Pt 2)(Pt 2):439-45. PubMed ID: 8687385
    [Abstract] [Full Text] [Related]

  • 3. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding.
    Adak S, Mazumder A, Banerjee RK.
    Biochem J; 1996 Mar 15; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798
    [Abstract] [Full Text] [Related]

  • 4. Homology-model-guided site-specific mutagenesis reveals the mechanisms of substrate binding and product-regulation of adenosine kinase from Leishmania donovani.
    Datta R, Das I, Sen B, Chakraborty A, Adak S, Mandal C, Datta AK.
    Biochem J; 2006 Feb 15; 394(Pt 1):35-42. PubMed ID: 16271040
    [Abstract] [Full Text] [Related]

  • 5. An essential role of active site arginine residue in iodide binding and histidine residue in electron transfer for iodide oxidation by horseradish peroxidase.
    Adak S, Bandyopadhyay D, Bandyopadhyay U, Banerjee RK.
    Mol Cell Biochem; 2001 Feb 15; 218(1-2):1-11. PubMed ID: 11330823
    [Abstract] [Full Text] [Related]

  • 6. Active site thiol(s) in Leishmania donovani adenosine kinase: comparison with hamster enzyme and evidence for the absence of regulatory adenosine binding site.
    Bhaumik D, Datta AK.
    Mol Biochem Parasitol; 1992 May 15; 52(1):29-38. PubMed ID: 1625705
    [Abstract] [Full Text] [Related]

  • 7. Aminoacetone synthase from goat liver. Involvement of arginine residue at the active site and on the stability of the enzyme.
    Ray S, Sarkar D, Ray M.
    Biochem J; 1991 May 01; 275 ( Pt 3)(Pt 3):575-9. PubMed ID: 1903922
    [Abstract] [Full Text] [Related]

  • 8. Mutational analysis of the active-site residues crucial for catalytic activity of adenosine kinase from Leishmania donovani.
    Datta R, Das I, Sen B, Chakraborty A, Adak S, Mandal C, Datta AK.
    Biochem J; 2005 May 01; 387(Pt 3):591-600. PubMed ID: 15606359
    [Abstract] [Full Text] [Related]

  • 9. Arginine residues at the active site of avian liver phosphoenolpyruvate carboxykinase.
    Cheng KC, Nowak T.
    J Biol Chem; 1989 Feb 25; 264(6):3317-24. PubMed ID: 2536743
    [Abstract] [Full Text] [Related]

  • 10. Immunochemical and catalytic characteristics of adenosine kinase from Leishmania donovani.
    Bhaumik D, Datta AK.
    J Biol Chem; 1989 Mar 15; 264(8):4356-61. PubMed ID: 2538441
    [Abstract] [Full Text] [Related]

  • 11. Chemical modification of arginine residues of rat liver S-adenosylhomocysteinase.
    Takata Y, Fujioka M.
    J Biol Chem; 1983 Jun 25; 258(12):7374-8. PubMed ID: 6863250
    [Abstract] [Full Text] [Related]

  • 12. Pigeon liver malic enzyme: involvement of an arginyl residue at the binding site for malate and its analogs.
    Vernon CM, Hsu RY.
    Arch Biochem Biophys; 1983 Aug 25; 225(1):296-305. PubMed ID: 6614923
    [Abstract] [Full Text] [Related]

  • 13. Arginine-specific modification of rabbit muscle phosphoglucose isomerase: differences in the inactivation by phenylglyoxal and butanedione and in the protection by substrate analogs.
    Pullan LM, Igarashi P, Noltmann EA.
    Arch Biochem Biophys; 1983 Mar 25; 221(2):489-98. PubMed ID: 6838203
    [Abstract] [Full Text] [Related]

  • 14. UDP-glucose 4-epimerase from Saccharomyces fragilis. Presence of an essential arginine residue at the substrate-binding site of the enzyme.
    Mukherji S, Bhaduri A.
    J Biol Chem; 1986 Apr 05; 261(10):4519-24. PubMed ID: 3957906
    [Abstract] [Full Text] [Related]

  • 15. Evidence for an essential arginine residue at the active site of ATP citrate lyase from rat liver.
    Ramakrishna S, Benjamin WB.
    Biochem J; 1981 Jun 01; 195(3):735-43. PubMed ID: 7316981
    [Abstract] [Full Text] [Related]

  • 16. Chemical modification of an arginine residue in the ATP-binding site of Ca2+ -transporting ATPase of sarcoplasmic reticulum by phenylglyoxal.
    Yamamoto H, Kawakita M.
    Mol Cell Biochem; 1999 Jan 01; 190(1-2):169-77. PubMed ID: 10098984
    [Abstract] [Full Text] [Related]

  • 17. Effect of group-selective modification reagents on arylamine N-acetyltransferase activities.
    Cheon HG, Hanna PE.
    Biochem Pharmacol; 1992 May 28; 43(10):2255-68. PubMed ID: 1599511
    [Abstract] [Full Text] [Related]

  • 18. Mechanistic studies on carboxypeptidase A from goat pancreas: role of arginine residue at the active site.
    Dua RD, Gupta K.
    Arch Biochem Biophys; 1985 Feb 01; 236(2):479-86. PubMed ID: 3970522
    [Abstract] [Full Text] [Related]

  • 19. Chemical modification of a functional arginine residue of rat liver glycine methyltransferase.
    Konishi K, Fujioka M.
    Biochemistry; 1987 Dec 15; 26(25):8496-502. PubMed ID: 3442671
    [Abstract] [Full Text] [Related]

  • 20. Evidence for arginine residues in the immunoglobulin-binding sites of human Clq.
    Comis A, Easterbrook-Smith SB.
    Biochim Biophys Acta; 1985 Sep 27; 842(1):45-51. PubMed ID: 3876114
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.