These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
188 related items for PubMed ID: 8139263
1. Enhanced proteolytic activity is responsible for the aberrant morphogenetic development of SV40-immortalized normal human salivary gland cells grown on basement membrane components. Azuma M, Tamatani T, Fukui K, Bando T, Sato M. Lab Invest; 1994 Feb; 70(2):217-27. PubMed ID: 8139263 [Abstract] [Full Text] [Related]
2. Morphogenesis of normal human salivary gland cells in vitro. Azuma M, Sato M. Histol Histopathol; 1994 Oct; 9(4):781-90. PubMed ID: 7894150 [Abstract] [Full Text] [Related]
3. Immortalization of normal human salivary gland cells with duct-, myoepithelial-, acinar-, or squamous phenotype by transfection with SV40 ori- mutant deoxyribonucleic acid. Azuma M, Tamatani T, Kasai Y, Sato M. Lab Invest; 1993 Jul; 69(1):24-42. PubMed ID: 7687310 [Abstract] [Full Text] [Related]
4. Role of cytokines in the destruction of acinar structure in Sjögren's syndrome salivary glands. Azuma M, Motegi K, Aota K, Hayashi Y, Sato M. Lab Invest; 1997 Sep; 77(3):269-80. PubMed ID: 9314950 [Abstract] [Full Text] [Related]
5. Suppression of tumor necrosis factor alpha-induced matrix metalloproteinase 9 production by the introduction of a super-repressor form of inhibitor of nuclear factor kappaBalpha complementary DNA into immortalized human salivary gland acinar cells. Prevention of the destruction of the acinar structure in Sjögren's syndrome salivary glands. Azuma M, Aota K, Tamatani T, Motegi K, Yamashita T, Harada K, Hayashi Y, Sato M. Arthritis Rheum; 2000 Aug; 43(8):1756-67. PubMed ID: 10943866 [Abstract] [Full Text] [Related]
6. Growth factor regulation of the amylase promoter in a differentiating salivary acinar cell line. Zheng C, Hoffman MP, McMillan T, Kleinman HK, O'Connell BC. J Cell Physiol; 1998 Dec; 177(4):628-35. PubMed ID: 10092215 [Abstract] [Full Text] [Related]
7. Involvement of hepatocyte growth factor in branching morphogenesis of murine salivary gland. Ikari T, Hiraki A, Seki K, Sugiura T, Matsumoto K, Shirasuna K. Dev Dyn; 2003 Oct; 228(2):173-84. PubMed ID: 14517989 [Abstract] [Full Text] [Related]
8. HSG cells differentiated by culture on extracellular matrix involves induction of S-adenosylmethione decarboxylase and ornithine decarboxylase. Lam K, Zhang L, Bewick M, Lafrenie RM. J Cell Physiol; 2005 May; 203(2):353-61. PubMed ID: 15521072 [Abstract] [Full Text] [Related]
9. Type IV collagenase(s) and TIMPs modulate endothelial cell morphogenesis in vitro. Schnaper HW, Grant DS, Stetler-Stevenson WG, Fridman R, D'Orazi G, Murphy AN, Bird RE, Hoythya M, Fuerst TR, French DL. J Cell Physiol; 1993 Aug; 156(2):235-46. PubMed ID: 8344982 [Abstract] [Full Text] [Related]
10. Lumen formation in three-dimensional cultures of salivary acinar cells. Pradhan S, Liu C, Zhang C, Jia X, Farach-Carson MC, Witt RL. Otolaryngol Head Neck Surg; 2010 Feb; 142(2):191-5. PubMed ID: 20115973 [Abstract] [Full Text] [Related]
12. Interaction with endothelial cells is a prerequisite for branching ductal-alveolar morphogenesis and hyperplasia of preneoplastic human breast epithelial cells: regulation by estrogen. Shekhar MP, Werdell J, Tait L. Cancer Res; 2000 Jan 15; 60(2):439-49. PubMed ID: 10667599 [Abstract] [Full Text] [Related]
13. Suppression of tumor necrosis factor alpha-induced matrix metalloproteinase 9 production in human salivary gland acinar cells by cepharanthine occurs via down-regulation of nuclear factor kappaB: a possible therapeutic agent for preventing the destruction of the acinar structure in the salivary glands of Sjögren's syndrome patients. Azuma M, Aota K, Tamatani T, Motegi K, Yamashita T, Ashida Y, Hayashi Y, Sato M. Arthritis Rheum; 2002 Jun 15; 46(6):1585-94. PubMed ID: 12115190 [Abstract] [Full Text] [Related]
14. Growth of purified lacrimal acinar cells in Matrigel raft cultures. Schechter J, Stevenson D, Chang D, Chang N, Pidgeon M, Nakamura T, Okamoto CT, Trousdale MD, Mircheff AK. Exp Eye Res; 2002 Mar 15; 74(3):349-60. PubMed ID: 12014916 [Abstract] [Full Text] [Related]
16. Contribution of proteases and plasmin-acquired activity in migration of Peptostreptococcus micros through a reconstituted basement membrane. Grenier D, Bouclin R. Oral Microbiol Immunol; 2006 Oct 15; 21(5):319-25. PubMed ID: 16922932 [Abstract] [Full Text] [Related]
17. Inhibition of endothelial cell differentiation on a glycosylated reconstituted basement membrane complex. Kuzuya M, Satake S, Miura H, Hayashi T, Iguchi A. Exp Cell Res; 1996 Aug 01; 226(2):336-45. PubMed ID: 8806437 [Abstract] [Full Text] [Related]
18. Mouse trophoblastic cell lines: II--Relationship between invasive potential and proteases. Sharma RK. In Vivo; 1998 Aug 01; 12(2):209-17. PubMed ID: 9627804 [Abstract] [Full Text] [Related]
19. Stimulation and inhibition of human mammary epithelial cell duct morphogenesis in vitro. Bergstraesser L, Sherer S, Panos R, Weitzman S. Proc Assoc Am Physicians; 1996 Mar 01; 108(2):140-54. PubMed ID: 8705734 [Abstract] [Full Text] [Related]