These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
204 related items for PubMed ID: 8139573
21. Association of RAP1 binding sites with stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae. Moehle CM, Hinnebusch AG. Mol Cell Biol; 1991 May; 11(5):2723-35. PubMed ID: 2017175 [Abstract] [Full Text] [Related]
24. A stationary-phase gene in Saccharomyces cerevisiae is a member of a novel, highly conserved gene family. Braun EL, Fuge EK, Padilla PA, Werner-Washburne M. J Bacteriol; 1996 Dec; 178(23):6865-72. PubMed ID: 8955308 [Abstract] [Full Text] [Related]
26. Synthetic lethality screen identifies a novel yeast myosin I gene (MYO5): myosin I proteins are required for polarization of the actin cytoskeleton. Goodson HV, Anderson BL, Warrick HM, Pon LA, Spudich JA. J Cell Biol; 1996 Jun; 133(6):1277-91. PubMed ID: 8682864 [Abstract] [Full Text] [Related]
27. Genetic and molecular characterization of GAL83: its interaction and similarities with other genes involved in glucose repression in Saccharomyces cerevisiae. Erickson JR, Johnston M. Genetics; 1993 Nov; 135(3):655-64. PubMed ID: 8293971 [Abstract] [Full Text] [Related]
28. Context affects nuclear protein localization in Saccharomyces cerevisiae. Nelson M, Silver P. Mol Cell Biol; 1989 Feb; 9(2):384-9. PubMed ID: 2496300 [Abstract] [Full Text] [Related]
29. Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Schmidt MC, McCartney RR, Zhang X, Tillman TS, Solimeo H, Wölfl S, Almonte C, Watkins SC. Mol Cell Biol; 1999 Jul; 19(7):4561-71. PubMed ID: 10373505 [Abstract] [Full Text] [Related]
33. Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Protopopov V, Govindan B, Novick P, Gerst JE. Cell; 1993 Sep 10; 74(5):855-61. PubMed ID: 8374953 [Abstract] [Full Text] [Related]
34. Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Cook JG, Bardwell L, Kron SJ, Thorner J. Genes Dev; 1996 Nov 15; 10(22):2831-48. PubMed ID: 8918885 [Abstract] [Full Text] [Related]
37. Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux. Meijer MM, Boonstra J, Verkleij AJ, Verrips CT. J Biol Chem; 1998 Sep 11; 273(37):24102-7. PubMed ID: 9727030 [Abstract] [Full Text] [Related]
38. Yeast mutant affected for viability upon nutrient starvation: characterization and cloning of the RVS161 gene. Crouzet M, Urdaci M, Dulau L, Aigle M. Yeast; 1991 Oct 11; 7(7):727-43. PubMed ID: 1776363 [Abstract] [Full Text] [Related]
39. Structural and functional analyses of APG5, a gene involved in autophagy in yeast. Kametaka S, Matsuura A, Wada Y, Ohsumi Y. Gene; 1996 Oct 31; 178(1-2):139-43. PubMed ID: 8921905 [Abstract] [Full Text] [Related]
40. The overexpression of the CDC25 gene of Saccharomyces cerevisiae causes a derepression of GAL system and an increase of GAL4 transcription. Rudoni S, Mauri I, Ceriani M, Coccetti P, Martegani E. Int J Biochem Cell Biol; 2000 Feb 31; 32(2):215-24. PubMed ID: 10687955 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]