These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
176 related items for PubMed ID: 8144673
1. An altered specificity mutation in the lambda repressor induces global reorganization of the protein-DNA interface. Benevides JM, Weiss MA, Thomas GJ. J Biol Chem; 1994 Apr 08; 269(14):10869-78. PubMed ID: 8144673 [Abstract] [Full Text] [Related]
2. Secondary structure and interaction of phage D108 Ner repressor with a 61-base-pair operator: evidence for altered protein and DNA structures in the complex. Benevides JM, Kukolj G, Autexier C, Aubrey KL, DuBow MS, Thomas GJ. Biochemistry; 1994 Sep 06; 33(35):10701-10. PubMed ID: 8075070 [Abstract] [Full Text] [Related]
3. DNA recognition by the helix-turn-helix motif: investigation by laser Raman spectroscopy of the phage lambda repressor and its interaction with operator sites OL1 and OR3. Benevides JM, Weiss MA, Thomas GJ. Biochemistry; 1991 Jun 18; 30(24):5955-63. PubMed ID: 1828373 [Abstract] [Full Text] [Related]
4. Design of the helix-turn-helix motif: nonlocal effects of quaternary structure in DNA recognition investigated by laser Raman spectroscopy. Benevides JM, Weiss MA, Thomas GJ. Biochemistry; 1991 May 07; 30(18):4381-8. PubMed ID: 2021630 [Abstract] [Full Text] [Related]
5. Deuterium exchange of operator 8CH groups as a Raman probe of repressor recognition: interactions of wild-type and mutant lambda repressors with operator OL1. Reilly KE, Becka R, Thomas GJ. Biochemistry; 1992 Mar 31; 31(12):3118-25. PubMed ID: 1532510 [Abstract] [Full Text] [Related]
6. Combined conformational search and finite-difference Poisson-Boltzmann approach for flexible docking. Application to an operator mutation in the lambda repressor-operator complex. Zacharias M, Luty BA, Davis ME, McCammon JA. J Mol Biol; 1994 May 06; 238(3):455-65. PubMed ID: 8176736 [Abstract] [Full Text] [Related]
7. Contacts between Tet repressor and tet operator revealed by new recognition specificities of single amino acid replacement mutants. Baumeister R, Helbl V, Hillen W. J Mol Biol; 1992 Aug 20; 226(4):1257-70. PubMed ID: 1518055 [Abstract] [Full Text] [Related]
8. Mutant lambda repressors with increased operator affinities reveal new, specific protein-DNA contacts. Benson N, Adams C, Youderian P. Genetics; 1992 Jan 20; 130(1):17-26. PubMed ID: 1531047 [Abstract] [Full Text] [Related]
9. Arc repressor-operator DNA interactions and contribution of Phe10 to binding specificity. Dostál L, Misselwitz R, Welfle H. Biochemistry; 2005 Jun 14; 44(23):8387-96. PubMed ID: 15938628 [Abstract] [Full Text] [Related]
10. Protein-directed DNA structure II. Raman spectroscopy of a leucine zipper bZIP complex. Benevides JM, Li T, Lu XJ, Srinivasan AR, Olson WK, Weiss MA, Thomas GJ. Biochemistry; 2000 Jan 25; 39(3):548-56. PubMed ID: 10642179 [Abstract] [Full Text] [Related]
11. Carboxyl-terminal domain dimer interface mutant 434 repressors have altered dimerization and DNA binding specificities. Donner AL, Paa K, Koudelka GB. J Mol Biol; 1998 Nov 13; 283(5):931-46. PubMed ID: 9799634 [Abstract] [Full Text] [Related]
12. An aromatic stacking interaction between subunits helps mediate DNA sequence specificity: operator site discrimination by phage lambda cI repressor. Huang YT, Rusinova E, Ross JB, Senear DF. J Mol Biol; 1997 Mar 28; 267(2):403-17. PubMed ID: 9096234 [Abstract] [Full Text] [Related]
13. How Cro and lambda-repressor distinguish between operators: the structural basis underlying a genetic switch. Albright RA, Matthews BW. Proc Natl Acad Sci U S A; 1998 Mar 31; 95(7):3431-6. PubMed ID: 9520383 [Abstract] [Full Text] [Related]
14. Differential recognition of OR1 and OR3 by bacteriophage 434 repressor and Cro. Koudelka GB, Lam CY. J Biol Chem; 1993 Nov 15; 268(32):23812-7. PubMed ID: 8226917 [Abstract] [Full Text] [Related]
15. DNA sequence dependent and independent conformational changes in multipartite operator recognition by lambda-repressor. Deb S, Bandyopadhyay S, Roy S. Biochemistry; 2000 Mar 28; 39(12):3377-83. PubMed ID: 10727231 [Abstract] [Full Text] [Related]
16. Comparison of the structures of operator DNA free and in complex with lambda repressor. Baleja JD, Sykes BD. Biochem Cell Biol; 1991 Mar 28; 69(2-3):202-5. PubMed ID: 2031722 [Abstract] [Full Text] [Related]
17. Computer-aided discrimination between active and inactive mutants of the N-terminal domain of the bacteriophage lambda repressor. Kombo DC, Némethy G, Gibson KD, Rackovsky S, Scheraga HA. J Mol Biol; 1996 Mar 01; 256(3):517-32. PubMed ID: 8604135 [Abstract] [Full Text] [Related]
18. Conserved residues make similar contacts in two repressor-operator complexes. Pabo CO, Aggarwal AK, Jordan SR, Beamer LJ, Obeysekare UR, Harrison SC. Science; 1990 Mar 09; 247(4947):1210-3. PubMed ID: 2315694 [Abstract] [Full Text] [Related]
19. Lambda repressor recognizes the approximately 2-fold symmetric half-operator sequences asymmetrically. Sarai A, Takeda Y. Proc Natl Acad Sci U S A; 1989 Sep 09; 86(17):6513-7. PubMed ID: 2771938 [Abstract] [Full Text] [Related]
20. Structure of the complex of lac repressor headpiece and an 11 base-pair half-operator determined by nuclear magnetic resonance spectroscopy and restrained molecular dynamics. Chuprina VP, Rullmann JA, Lamerichs RM, van Boom JH, Boelens R, Kaptein R. J Mol Biol; 1993 Nov 20; 234(2):446-62. PubMed ID: 8230225 [Abstract] [Full Text] [Related] Page: [Next] [New Search]