These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. May the driving force be with you--whatever it is. Cavanagh J, Akke M. Nat Struct Biol; 2000 Jan; 7(1):11-3. PubMed ID: 10625416 [Abstract] [Full Text] [Related]
3. Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: implications for the entropy of association with DNA. Bracken C, Carr PA, Cavanagh J, Palmer AG. J Mol Biol; 1999 Feb 05; 285(5):2133-46. PubMed ID: 9925790 [Abstract] [Full Text] [Related]
4. Direct estimation of entropy loss due to reduced translational and rotational motions upon molecular binding. Lu B, Wong CF. Biopolymers; 2005 Dec 05; 79(5):277-85. PubMed ID: 16078192 [Abstract] [Full Text] [Related]
5. Loss of translational entropy in binding, folding, and catalysis. Amzel LM. Proteins; 1997 Jun 05; 28(2):144-9. PubMed ID: 9188731 [Abstract] [Full Text] [Related]
6. A calorimetric study of the folding-unfolding of an alpha-helix with covalently closed N and C-terminal loops. Taylor JW, Greenfield NJ, Wu B, Privalov PL. J Mol Biol; 1999 Aug 27; 291(4):965-76. PubMed ID: 10452900 [Abstract] [Full Text] [Related]
7. Thermodynamics and kinetics of the reaction of a single-chain antibody fragment (scFv) with the leucine zipper domain of transcription factor GCN4. Weber-Bornhauser S, Eggenberger J, Jelesarov I, Bernard A, Berger C, Bosshard HR. Biochemistry; 1998 Sep 15; 37(37):13011-20. PubMed ID: 9737882 [Abstract] [Full Text] [Related]
8. The energetics of HMG box interactions with DNA: thermodynamics of the DNA binding of the HMG box from mouse sox-5. Privalov PL, Jelesarov I, Read CM, Dragan AI, Crane-Robinson C. J Mol Biol; 1999 Dec 10; 294(4):997-1013. PubMed ID: 10588902 [Abstract] [Full Text] [Related]
9. Loss of translational entropy in molecular associations. Siebert X, Amzel LM. Proteins; 2004 Jan 01; 54(1):104-15. PubMed ID: 14705027 [Abstract] [Full Text] [Related]
10. Conformational constraint in protein ligand design and the inconsistency of binding entropy. Udugamasooriya DG, Spaller MR. Biopolymers; 2008 Aug 01; 89(8):653-67. PubMed ID: 18335423 [Abstract] [Full Text] [Related]
11. The entropy cost of protein association. Tamura A, Privalov PL. J Mol Biol; 1997 Nov 14; 273(5):1048-60. PubMed ID: 9367790 [Abstract] [Full Text] [Related]
14. The nature of the free energy barriers to two-state folding. Akmal A, Muñoz V. Proteins; 2004 Oct 01; 57(1):142-52. PubMed ID: 15326600 [Abstract] [Full Text] [Related]
15. A novel feature of DNA recognition: a mutant Gcn4p bZip peptide with dual DNA binding specificities dependent of half-site spacing. Suckow M, Kisters-Woike B, Hollenberg CP. J Mol Biol; 1999 Mar 05; 286(4):983-7. PubMed ID: 10047475 [Abstract] [Full Text] [Related]
16. Flexibility and conformational entropy in protein-protein binding. Grünberg R, Nilges M, Leckner J. Structure; 2006 Apr 05; 14(4):683-93. PubMed ID: 16615910 [Abstract] [Full Text] [Related]
17. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes. Felitsky DJ, Record MT. Biochemistry; 2003 Feb 25; 42(7):2202-17. PubMed ID: 12590610 [Abstract] [Full Text] [Related]
18. The strength of acidic activation domains correlates with their affinity for both transcriptional and non-transcriptional proteins. Melcher K. J Mol Biol; 2000 Sep 01; 301(5):1097-112. PubMed ID: 10966808 [Abstract] [Full Text] [Related]