These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 8149406
21. The sperm-induced Ca2+ wave following fertilization of the Xenopus egg requires the production of Ins(1, 4, 5)P3. Nuccitelli R, Yim DL, Smart T. Dev Biol; 1993 Jul; 158(1):200-12. PubMed ID: 7687224 [Abstract] [Full Text] [Related]
22. Effect of inositol trisphosphate and calcium on oscillating elevations of intracellular calcium in Xenopus oocytes. DeLisle S, Krause KH, Denning G, Potter BV, Welsh MJ. J Biol Chem; 1990 Jul 15; 265(20):11726-30. PubMed ID: 2365695 [Abstract] [Full Text] [Related]
23. ATP regulation of recombinant type 3 inositol 1,4,5-trisphosphate receptor gating. Mak DO, McBride S, Foskett JK. J Gen Physiol; 2001 May 15; 117(5):447-56. PubMed ID: 11331355 [Abstract] [Full Text] [Related]
24. Disaccharide polyphosphates based upon adenophostin A activate hepatic D-myo-inositol 1,4,5-trisphosphate receptors. Marchant JS, Beecroft MD, Riley AM, Jenkins DJ, Marwood RD, Taylor CW, Potter BV. Biochemistry; 1997 Oct 21; 36(42):12780-90. PubMed ID: 9335535 [Abstract] [Full Text] [Related]
25. Characterisation of stereospecific binding sites for inositol 1,4,5-trisphosphate in airway smooth muscle. Chilvers ER, Challiss RA, Willcocks AL, Potter BV, Barnes PJ, Nahorski SR. Br J Pharmacol; 1990 Feb 21; 99(2):297-302. PubMed ID: 2158373 [Abstract] [Full Text] [Related]
26. The effects of inositol trisphosphates and inositol tetrakisphosphate on Ca2+ release and Cl- current pattern in the Xenopus laevis oocyte. Ferguson JE, Han JK, Kao JP, Nuccitelli R. Exp Cell Res; 1991 Feb 21; 192(2):352-65. PubMed ID: 1846334 [Abstract] [Full Text] [Related]
27. Synthesis and application of photoaffinity analogues of inositol 1,4,5-trisphosphate selectively substituted at the 1-phosphate group. Schäfer R, Nehls-Sahabandu M, Grabowsky B, Dehlinger-Kremer M, Schulz I, Mayr GW. Biochem J; 1990 Dec 15; 272(3):817-25. PubMed ID: 2176480 [Abstract] [Full Text] [Related]
28. Synergistic effects of inositol 1,3,4,5-tetrakisphosphate on inositol 2,4,5-triphosphate-stimulated Ca2+ release do not involve direct interaction of inositol 1,3,4,5-tetrakisphosphate with inositol triphosphate-binding sites. Loomis-Husselbee JW, Cullen PJ, Dreikausen UE, Irvine RF, Dawson AP. Biochem J; 1996 Mar 15; 314 ( Pt 3)(Pt 3):811-6. PubMed ID: 8615774 [Abstract] [Full Text] [Related]
29. Characterization of [3H]inositol 1,4,5-trisphosphate binding sites in human temporal cortical and cerebellar membranes. Garlind A, Cowburn RF, Fowler CJ. Neurochem Int; 1994 Jan 15; 24(1):73-80. PubMed ID: 8130738 [Abstract] [Full Text] [Related]
30. InsP3 and Ins(1,3,4,5)P4 act in synergy to stimulate influx of extracellular Ca2+ in Xenopus oocytes. DeLisle S, Pittet D, Potter BV, Lew PD, Welsh MJ. Am J Physiol; 1992 Jun 15; 262(6 Pt 1):C1456-63. PubMed ID: 1377444 [Abstract] [Full Text] [Related]
31. Functional coupling of human L-type Ca2+ channels and angiotensin AT1A receptors coexpressed in xenopus laevis oocytes: involvement of the carboxyl-terminal Ca2+ sensors. Oz M, Melia MT, Soldatov NM, Abernethy DR, Morad M. Mol Pharmacol; 1998 Dec 15; 54(6):1106-12. PubMed ID: 9855640 [Abstract] [Full Text] [Related]
32. Receptor for myo-inositol trisphosphate from the microsomal fraction of Vigna radiata. Biswas S, Dalal B, Sen M, Biswas BB. Biochem J; 1995 Mar 15; 306 ( Pt 3)(Pt 3):631-6. PubMed ID: 7702554 [Abstract] [Full Text] [Related]
33. 2-Hydroxyethyl-alpha-D-glucopyranoside-2,3',4'-trisphosphate, a novel, metabolically resistant, adenophostin A and myo-inositol-1,4,5-trisphosphate analogue, potently interacts with the myo-inositol-1,4,5-trisphosphate receptor. Wilcox RA, Erneux C, Primrose WU, Gigg R, Nahorski SR. Mol Pharmacol; 1995 Jun 15; 47(6):1204-11. PubMed ID: 7603461 [Abstract] [Full Text] [Related]
34. Intracellular targeting and homotetramer formation of a truncated inositol 1,4,5-trisphosphate receptor-green fluorescent protein chimera in Xenopus laevis oocytes: evidence for the involvement of the transmembrane spanning domain in endoplasmic reticulum targeting and homotetramer complex formation. Sayers LG, Miyawaki A, Muto A, Takeshita H, Yamamoto A, Michikawa T, Furuichi T, Mikoshiba K. Biochem J; 1997 Apr 01; 323 ( Pt 1)(Pt 1):273-80. PubMed ID: 9173893 [Abstract] [Full Text] [Related]
35. Inositol 1,4,5-trisphosphate slowly converts its receptor to a state of higher affinity in sheep cerebellum membranes. Coquil JF, Mauger JP, Claret M. J Biol Chem; 1996 Feb 16; 271(7):3568-74. PubMed ID: 8631963 [Abstract] [Full Text] [Related]
36. Comparative localization of inositol 1,4,5-trisphosphate and ryanodine receptors in intestinal smooth muscle: an analytical subfractionation study. Wibo M, Godfraind T. Biochem J; 1994 Jan 15; 297 ( Pt 2)(Pt 2):415-23. PubMed ID: 8297349 [Abstract] [Full Text] [Related]
37. Kinetics of elementary Ca2+ puffs evoked in Xenopus oocytes by different Ins(1,4,5)P3 receptor agonists. Marchant JS, Parker I. Biochem J; 1998 Sep 15; 334 ( Pt 3)(Pt 3):505-9. PubMed ID: 9729454 [Abstract] [Full Text] [Related]
38. Rat basophilic leukemia cells as model system for inositol 1,4,5-trisphosphate receptor IV, a receptor of the type II family: functional comparison and immunological detection. Parys JB, de Smedt H, Missiaen L, Bootman MD, Sienaert I, Casteels R. Cell Calcium; 1995 Apr 15; 17(4):239-49. PubMed ID: 7664312 [Abstract] [Full Text] [Related]