These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
160 related items for PubMed ID: 8150228
21. [Growth characteristics of bovine retinal pericytes in culture]. Hahn B, Knorr M, Wunderlich K, Dartsch PC. Ophthalmologe; 1994 Jun; 91(3):368-72. PubMed ID: 8086755 [Abstract] [Full Text] [Related]
22. Production of endothelin 1 by cultured bovine retinal endothelial cells and presence of endothelin receptors on associated pericytes. Takahashi K, Brooks RA, Kanse SM, Ghatei MA, Kohner EM, Bloom SR. Diabetes; 1989 Sep; 38(9):1200-2. PubMed ID: 2548910 [Abstract] [Full Text] [Related]
23. Large conductance calcium-activated potassium channels in cultured retinal pericytes under normal and high-glucose conditions. Berweck S, Lepple-Wienhues A, Stöss M, Wiederholt M. Pflugers Arch; 1994 May; 427(1-2):9-16. PubMed ID: 8058479 [Abstract] [Full Text] [Related]
24. Contractile responses of cultured bovine retinal pericytes to angiotensin II. Matsugi T, Chen Q, Anderson DR. Arch Ophthalmol; 1997 Oct; 115(10):1281-5. PubMed ID: 9338674 [Abstract] [Full Text] [Related]
25. Endothelin-1-induced contraction of bovine retinal small arteries is reversible and abolished by nitrendipine. Nyborg NC, Prieto D, Benedito S, Nielsen PJ. Invest Ophthalmol Vis Sci; 1991 Jan; 32(1):27-31. PubMed ID: 1987104 [Abstract] [Full Text] [Related]
26. Membrane potentials in retinal capillary pericytes: excitability and effect of vasoactive substances. Helbig H, Kornacker S, Berweck S, Stahl F, Lepple-Wienhues A, Wiederholt M. Invest Ophthalmol Vis Sci; 1992 Jun; 33(7):2105-12. PubMed ID: 1318866 [Abstract] [Full Text] [Related]
27. Characterization of endothelin receptors and effects of endothelin on diacylglycerol and protein kinase C in retinal capillary pericytes. Lee TS, Hu KQ, Chao T, King GL. Diabetes; 1989 Dec; 38(12):1643-6. PubMed ID: 2555243 [Abstract] [Full Text] [Related]
28. Advanced glycation endproduct modified basement membrane attenuates endothelin-1 induced [Ca2+]i signalling and contraction in retinal microvascular pericytes. Hughes SJ, Wall N, Scholfield CN, McGeown JG, Gardiner TA, Stitt AW, Curtis TM. Mol Vis; 2004 Dec 27; 10():996-1004. PubMed ID: 15635291 [Abstract] [Full Text] [Related]
29. Glaucoma, capillaries and pericytes. 5. Preliminary evidence that carbon dioxide relaxes pericyte contractile tone. Anderson DR, Davis EB. Ophthalmologica; 1996 Dec 27; 210(5):280-4. PubMed ID: 8878211 [Abstract] [Full Text] [Related]
30. The effect of aminoguanidine and tolrestat on glucose toxicity in bovine retinal capillary pericytes. Chibber R, Molinatti PA, Wong JS, Mirlees D, Kohner EM. Diabetes; 1994 Jun 27; 43(6):758-63. PubMed ID: 8194660 [Abstract] [Full Text] [Related]
31. Effect of CO2 on intracellular pH and contraction of retinal capillary pericytes. Chen Q, Anderson DR. Invest Ophthalmol Vis Sci; 1997 Mar 27; 38(3):643-51. PubMed ID: 9071218 [Abstract] [Full Text] [Related]
32. [PDGF-induced effect on cytosolic free calcium concentration of cultured retinal pericytes]. Knorr M, Hahn B, Wunderlich K, Hoppe J, Steuhl KP. Ophthalmologe; 1995 Oct 27; 92(5):692-7. PubMed ID: 8750999 [Abstract] [Full Text] [Related]
33. Characterization of endothelin A (ETA) and endothelin B (ETB) receptors in cultured bovine retinal pericytes. McDonald DM, Bailie JR, Archer DB, Chakravarthy U. Invest Ophthalmol Vis Sci; 1995 May 27; 36(6):1088-94. PubMed ID: 7730018 [Abstract] [Full Text] [Related]
34. Normalization of glucose entry under the high glucose condition by phlorizin attenuates the high glucose-induced morphological and functional changes of cultured bovine retinal pericytes. Wakisaka M, Yoshinari M, Asano T, Iino K, Nakamura S, Takata Y, Fujishima M. Biochim Biophys Acta; 1999 Jan 06; 1453(1):83-91. PubMed ID: 9989248 [Abstract] [Full Text] [Related]
35. Contractile responses and signal transduction of endothelin-1 in aorta and mesenteric vasculature of adult spontaneously hypertensive rats. Nguyen PV, Yang XP, Li G, Deng LY, Flückiger JP, Schiffrin EL. Can J Physiol Pharmacol; 1993 Jul 06; 71(7):473-83. PubMed ID: 8242481 [Abstract] [Full Text] [Related]
36. Microvascular pericyte contractility in vitro: comparison with other cells of the vascular wall. Kelley C, D'Amore P, Hechtman HB, Shepro D. J Cell Biol; 1987 Mar 06; 104(3):483-90. PubMed ID: 3818789 [Abstract] [Full Text] [Related]
37. F-actin polymerization contributes to pericyte contractility in retinal capillaries. Kureli G, Yilmaz-Ozcan S, Erdener SE, Donmez-Demir B, Yemisci M, Karatas H, Dalkara T. Exp Neurol; 2020 Oct 06; 332():113392. PubMed ID: 32610106 [Abstract] [Full Text] [Related]
38. High glucose-induced mesangial cell altered contractility: role of the polyol pathway. Derylo B, Babazono T, Glogowski E, Kapor-Drezgic J, Hohman T, Whiteside C. Diabetologia; 1998 May 06; 41(5):507-15. PubMed ID: 9628266 [Abstract] [Full Text] [Related]
39. Identification of multiple genes in bovine retinal pericytes altered by exposure to elevated levels of glucose by using mRNA differential display. Aiello LP, Robinson GS, Lin YW, Nishio Y, King GL. Proc Natl Acad Sci U S A; 1994 Jun 21; 91(13):6231-5. PubMed ID: 8016144 [Abstract] [Full Text] [Related]
40. The role of pulsatile flow in controlling microvascular retinal endothelial and pericyte cell apoptosis and proliferation. Walshe TE, Connell P, Cryan L, Ferguson G, O'Brien C, Cahill PA. Cardiovasc Res; 2011 Feb 15; 89(3):661-70. PubMed ID: 21030535 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]