These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


205 related items for PubMed ID: 8162621

  • 21. A selective effect of Ni2+ on wave initiation in bull sperm flagella.
    Lindemann CB, Fentie I, Rikmenspoel R.
    J Cell Biol; 1980 Nov; 87(2 Pt 1):420-6. PubMed ID: 7430248
    [Abstract] [Full Text] [Related]

  • 22. Digital image analysis of flagellar beating and microtubule sliding of activated and hyperactivated sperm flagella.
    Ishijima S.
    Soc Reprod Fertil Suppl; 2007 Nov; 65():327-30. PubMed ID: 17644972
    [Abstract] [Full Text] [Related]

  • 23. Spontaneous recovery after experimental manipulation of the plane of beat in sperm flagella.
    Gibbons IR, Shingyoji C, Murakami A, Takahashi K.
    Nature; 2007 Nov; 325(6102):351-2. PubMed ID: 3808030
    [Abstract] [Full Text] [Related]

  • 24. Computer simulation of bend propagation by axoplasmic microtubules.
    Brokaw CJ.
    Cell Motil Cytoskeleton; 1986 Nov; 6(3):347-53. PubMed ID: 2427228
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. External mechanical control of the timing of bend initiation in sea urchin sperm flagella.
    Eshel D, Gibbons IR.
    Cell Motil Cytoskeleton; 1989 Nov; 14(3):416-23. PubMed ID: 2582499
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. The axonemal axis and Ca2+-induced asymmetry of active microtubule sliding in sea urchin sperm tails.
    Sale WS.
    J Cell Biol; 1986 Jun; 102(6):2042-52. PubMed ID: 2940250
    [Abstract] [Full Text] [Related]

  • 30. Flagellar quiescence response in sea urchin sperm induced by electric stimulation.
    Shingyoji C, Takahashi K.
    Cell Motil Cytoskeleton; 1995 Jun; 31(1):59-65. PubMed ID: 7553902
    [Abstract] [Full Text] [Related]

  • 31. Analysis of the flagellar bending waves of ejaculated ram sperm.
    Chevrier C, Dacheux JL.
    Cell Motil Cytoskeleton; 1987 Jun; 8(3):261-73. PubMed ID: 3690691
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Mechanical induction of oscillatory movement in demembranated, immotile flagella of sea urchin sperm at very low ATP concentrations.
    Izawa Y, Shingyoji C.
    J Exp Biol; 2020 Oct 16; 223(Pt 20):. PubMed ID: 32796042
    [Abstract] [Full Text] [Related]

  • 34. A lithium-sensitive regulator of sperm flagellar oscillation is activated by cAMP-dependent phosphorylation.
    Brokaw CJ.
    J Cell Biol; 1987 Oct 16; 105(4):1789-98. PubMed ID: 2822725
    [Abstract] [Full Text] [Related]

  • 35. Motility of triton-demembranated sea urchin sperm flagella during digestion by trypsin.
    Brokaw CJ, Simonick TF.
    J Cell Biol; 1977 Dec 16; 75(3):650-65. PubMed ID: 562884
    [Abstract] [Full Text] [Related]

  • 36. Studies on the eel sperm flagellum. 3. Vibratile motility and rotatory bending.
    Woolley DM.
    Cell Motil Cytoskeleton; 1998 Dec 16; 39(3):246-55. PubMed ID: 9519905
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Computer simulation of flagellar movement VIII: coordination of dynein by local curvature control can generate helical bending waves.
    Brokaw CJ.
    Cell Motil Cytoskeleton; 2002 Oct 16; 53(2):103-24. PubMed ID: 12211108
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. The velocity of microtubule sliding: its stability and load dependency.
    Ishijima S.
    Cell Motil Cytoskeleton; 2007 Nov 16; 64(11):809-13. PubMed ID: 17685439
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.