These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
166 related items for PubMed ID: 8168538
1. The kinetics and thermodynamics of the binding of cytochalasin B to sugar transporters. Walmsley AR, Lowe AG, Henderson PJ. Eur J Biochem; 1994 Apr 01; 221(1):513-22. PubMed ID: 8168538 [Abstract] [Full Text] [Related]
2. Asparagine 394 in putative helix 11 of the galactose-H+ symport protein (GalP) from Escherichia coli is associated with the internal binding site for cytochalasin B and sugar. McDonald TP, Walmsley AR, Henderson PJ. J Biol Chem; 1997 Jun 13; 272(24):15189-99. PubMed ID: 9182541 [Abstract] [Full Text] [Related]
3. Kinetics and thermodynamics of the binding of forskolin to the galactose-H+ transport protein, GalP, of Escherichia coli. Martin GE, Rutherford NG, Henderson PJ, Walmsley AR. Biochem J; 1995 May 15; 308 ( Pt 1)(Pt 1):261-8. PubMed ID: 7755573 [Abstract] [Full Text] [Related]
4. The role of tryptophans 371 and 395 in the binding of antibiotics and the transport of sugars by the D-galactose-H+ symport protein (GalP) from Escherichia coli. McDonald TP, Walmsley AR, Martin GE, Henderson PJ. J Biol Chem; 1995 Dec 22; 270(51):30359-70. PubMed ID: 8530461 [Abstract] [Full Text] [Related]
5. Dissection of discrete kinetic events in the binding of antibiotics and substrates to the galactose-H+ symport protein, GalP, of Escherichia coli. Henderson PJ, Martin GE, McDonald TP, Steel A, Walmsley AR. Antonie Van Leeuwenhoek; 1994 Dec 22; 65(4):349-58. PubMed ID: 7832591 [Abstract] [Full Text] [Related]
6. Forskolin specifically inhibits the bacterial galactose-H+ transport protein, GalP. Martin GE, Seamon KB, Brown FM, Shanahan MF, Roberts PE, Henderson PJ. J Biol Chem; 1994 Oct 07; 269(40):24870-7. PubMed ID: 7929167 [Abstract] [Full Text] [Related]
7. Equilibrium and transient kinetic studies of the binding of cytochalasin B to the L-arabinose-H+ symport protein of Escherichia coli. Determination of the sugar binding specificity of the L-arabinose-H+ symporter. Walmsley AR, Petro KR, Henderson PJ. Eur J Biochem; 1993 Jul 01; 215(1):43-54. PubMed ID: 8344284 [Abstract] [Full Text] [Related]
8. Cytochalasin B as a probe of protein structure and substrate recognition by the galactose/H+ transporter of Escherichia coli. Cairns MT, McDonald TP, Horne P, Henderson PJ, Baldwin SA. J Biol Chem; 1991 May 05; 266(13):8176-83. PubMed ID: 1850739 [Abstract] [Full Text] [Related]
9. The pre-steady-state kinetics of conformational changes in sugar transporters. Walmsley AR, Martin GE, McDonald TP, Henderson PJ. Biochem Soc Trans; 1994 Aug 05; 22(3):650-4. PubMed ID: 7821656 [No Abstract] [Full Text] [Related]
10. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites. Sultzman LA, Carruthers A. Biochemistry; 1999 May 18; 38(20):6640-50. PubMed ID: 10350483 [Abstract] [Full Text] [Related]
11. 8-Anilino-1-naphthalenesulfonate is a fluorescent probe of conformational changes in the D-galactose-H+ symport protein of Escherichia coli. Walmsley AR, Martin GE, Henderson PJ. J Biol Chem; 1994 Jun 24; 269(25):17009-19. PubMed ID: 8006005 [Abstract] [Full Text] [Related]
12. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding. Coderre PE, Cloherty EK, Zottola RJ, Carruthers A. Biochemistry; 1995 Aug 01; 34(30):9762-73. PubMed ID: 7626647 [Abstract] [Full Text] [Related]
13. The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites. Cloherty EK, Levine KB, Carruthers A. Biochemistry; 2001 Dec 25; 40(51):15549-61. PubMed ID: 11747430 [Abstract] [Full Text] [Related]
14. Differentiation of erythrocyte-(GLUT1), liver-(GLUT2), and adipocyte-type (GLUT4) glucose transporters by binding of the inhibitory ligands cytochalasin B, forskolin, dipyridamole, and isobutylmethylxanthine. Hellwig B, Joost HG. Mol Pharmacol; 1991 Sep 25; 40(3):383-9. PubMed ID: 1716731 [Abstract] [Full Text] [Related]
15. Conversion between two cytochalasin B-binding states of the human GLUT1 glucose transporter. Gottschalk I, Lundqvist A, Zeng CM, Hägglund CL, Zuo SS, Brekkan E, Eaker D, Lundahl P. Eur J Biochem; 2000 Dec 25; 267(23):6875-82. PubMed ID: 11082199 [Abstract] [Full Text] [Related]
16. Ethanol weakens cytochalasin B binding to the GLUT1 glucose transporter and drug partitioning into lipid bilayers. Lagerquist Hägglund C, Gottschalk I, Lundahl P. J Chromatogr A; 2004 Mar 26; 1031(1-2):113-6. PubMed ID: 15058574 [Abstract] [Full Text] [Related]
17. Changes in the intrinsic fluorescence of the human erythrocyte monosaccharide transporter upon ligand binding. Gorga FR, Lienhard GE. Biochemistry; 1982 Apr 13; 21(8):1905-8. PubMed ID: 7200802 [Abstract] [Full Text] [Related]
18. Cysteine residues in the D-galactose-H+ symport protein of Escherichia coli: effects of mutagenesis on transport, reaction with N-ethylmaleimide and antibiotic binding. McDonald TP, Henderson PJ. Biochem J; 2001 Feb 01; 353(Pt 3):709-17. PubMed ID: 11171069 [Abstract] [Full Text] [Related]
19. Immobilized membrane vesicle or proteoliposome affinity chromatography. Frontal analysis of interactions of cytochalasin B and D-glucose with the human red cell glucose transporter. Brekkan E, Lundqvist A, Lundahl P. Biochemistry; 1996 Sep 17; 35(37):12141-5. PubMed ID: 8810921 [Abstract] [Full Text] [Related]
20. Cadmium increases GLUT1 substrate binding affinity in vitro while reducing its cytochalasin B binding affinity. Lachaal M, Liu H, Kim S, Spangler RA, Jung CY. Biochemistry; 1996 Nov 26; 35(47):14958-62. PubMed ID: 8942661 [Abstract] [Full Text] [Related] Page: [Next] [New Search]