These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


134 related items for PubMed ID: 8168727

  • 1. Tyrosinase-induced phenoxyl radicals of etoposide (VP-16): interaction with reductants in model systems, K562 leukemic cell and nuclear homogenates.
    Stoyanovsky D, Yalowich J, Gantchev T, Kagan V.
    Free Radic Res Commun; 1993; 19(6):371-86. PubMed ID: 8168727
    [Abstract] [Full Text] [Related]

  • 2. Ascorbate is the primary reductant of the phenoxyl radical of etoposide in the presence of thiols both in cell homogenates and in model systems.
    Kagan VE, Yalowich JC, Day BW, Goldman R, Gantchev TG, Stoyanovsky DA.
    Biochemistry; 1994 Aug 16; 33(32):9651-60. PubMed ID: 8068642
    [Abstract] [Full Text] [Related]

  • 3. Phenoxyl radicals of etoposide (VP-16) can directly oxidize intracellular thiols: protective versus damaging effects of phenolic antioxidants.
    Tyurina YY, Tyurin VA, Yalowich JC, Quinn PJ, Claycamp HG, Schor NF, Pitt BR, Kagan VE.
    Toxicol Appl Pharmacol; 1995 Apr 16; 131(2):277-88. PubMed ID: 7716769
    [Abstract] [Full Text] [Related]

  • 4. Reduction of phenoxyl radicals of the antitumour agent etoposide (VP-16) by glutathione and protein sulfhydryls in human leukaemia cells: Implications for cytotoxicity.
    Yalowich JC, Tyurina YY, Tyurin VA, Allan WP, Kagan VE.
    Toxicol In Vitro; 1996 Feb 16; 10(1):59-68. PubMed ID: 20650183
    [Abstract] [Full Text] [Related]

  • 5. Inhibition of Na+/K(+)-ATPase by phenoxyl radicals of etoposide (VP-16): role of sulfhydryls oxidation.
    Kurella EG, Osipov AN, Goldman R, Boldyrev AA, Kagan VE.
    Biochim Biophys Acta; 1995 Nov 21; 1232(1-2):52-8. PubMed ID: 7495837
    [Abstract] [Full Text] [Related]

  • 6. Direct evidence for recycling of myeloperoxidase-catalyzed phenoxyl radicals of a vitamin E homologue, 2,2,5,7,8-pentamethyl-6-hydroxy chromane, by ascorbate/dihydrolipoate in living HL-60 cells.
    Kagan VE, Kuzmenko AI, Shvedova AA, Kisin ER, Li R, Martin I, Quinn PJ, Tyurin VA, Tyurina YY, Yalowich JC.
    Biochim Biophys Acta; 2003 Mar 17; 1620(1-3):72-84. PubMed ID: 12595076
    [Abstract] [Full Text] [Related]

  • 7. Interactions of phenoxyl radical of antitumor drug, etoposide, with reductants in solution and in cell and nuclear homogenates: electron spin resonance and high-performance liquid chromatography.
    Gantchev TG, van Lier JE, Stoyanovsky DA, Yalowich JC, Kagan VE.
    Methods Enzymol; 1994 Mar 17; 234():631-42. PubMed ID: 7808339
    [No Abstract] [Full Text] [Related]

  • 8. Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: implications for benzene toxicity.
    Stoyanovsky DA, Goldman R, Claycamp HG, Kagan VE.
    Arch Biochem Biophys; 1995 Mar 10; 317(2):315-23. PubMed ID: 7893144
    [Abstract] [Full Text] [Related]

  • 9. Antioxidant paradoxes of phenolic compounds: peroxyl radical scavenger and lipid antioxidant, etoposide (VP-16), inhibits sarcoplasmic reticulum Ca(2+)-ATPase via thiol oxidation by its phenoxyl radical.
    Ritov VB, Goldman R, Stoyanovsky DA, Menshikova EV, Kagan VE.
    Arch Biochem Biophys; 1995 Aug 01; 321(1):140-52. PubMed ID: 7639514
    [Abstract] [Full Text] [Related]

  • 10. Reversible thiol-dependent activation of ryanodine-sensitive Ca2+ release channel by etoposide (VP-16) phenoxyl radical.
    Fabisiak JP, Ritov VB, Kagan VE.
    Antioxid Redox Signal; 2000 Aug 01; 2(1):73-82. PubMed ID: 11232603
    [Abstract] [Full Text] [Related]

  • 11. Pro-oxidant and antioxidant mechanisms of etoposide in HL-60 cells: role of myeloperoxidase.
    Kagan VE, Kuzmenko AI, Tyurina YY, Shvedova AA, Matsura T, Yalowich JC.
    Cancer Res; 2001 Nov 01; 61(21):7777-84. PubMed ID: 11691792
    [Abstract] [Full Text] [Related]

  • 12. Generation and recycling of radicals from phenolic antioxidants.
    Kagan VE, Serbinova EA, Packer L.
    Arch Biochem Biophys; 1990 Jul 01; 280(1):33-9. PubMed ID: 2162153
    [Abstract] [Full Text] [Related]

  • 13. Characterization of free radicals produced during oxidation of etoposide (VP-16) and its catechol and quinone derivatives. An ESR Study.
    Kalyanaraman B, Nemec J, Sinha BK.
    Biochemistry; 1989 May 30; 28(11):4839-46. PubMed ID: 2548593
    [Abstract] [Full Text] [Related]

  • 14. Endogenous ascorbate regenerates vitamin E in the retina directly and in combination with exogenous dihydrolipoic acid.
    Stoyanovsky DA, Goldman R, Darrow RM, Organisciak DT, Kagan VE.
    Curr Eye Res; 1995 Mar 30; 14(3):181-9. PubMed ID: 7796601
    [Abstract] [Full Text] [Related]

  • 15. Tyrosinase-induced free radical formation from VP-16,213: relationship to cytotoxicity.
    Usui N, Sinha BK.
    Free Radic Res Commun; 1990 Mar 30; 10(4-5):287-93. PubMed ID: 1963166
    [Abstract] [Full Text] [Related]

  • 16. Mechanism-based chemopreventive strategies against etoposide-induced acute myeloid leukemia: free radical/antioxidant approach.
    Kagan VE, Yalowich JC, Borisenko GG, Tyurina YY, Tyurin VA, Thampatty P, Fabisiak JP.
    Mol Pharmacol; 1999 Sep 30; 56(3):494-506. PubMed ID: 10462537
    [Abstract] [Full Text] [Related]

  • 17. Reactions of phenoxyl radicals with NADPH-cytochrome P-450 oxidoreductase and NADPH: reduction of the radicals and inhibition of the enzyme.
    Goldman R, Tsyrlov IB, Grogan J, Kagan VE.
    Biochemistry; 1997 Mar 18; 36(11):3186-92. PubMed ID: 9115995
    [Abstract] [Full Text] [Related]

  • 18. Enhancement of etoposide (VP-16) cytotoxicity by enzymatic and photodynamically induced oxidative stress.
    Gantchev TG, Hunting DJ.
    Anticancer Drugs; 1997 Feb 18; 8(2):164-73. PubMed ID: 9073312
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.