These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
134 related items for PubMed ID: 8168727
21. Anti-/pro-oxidant effects of phenolic compounds in cells: are colchicine metabolites chain-breaking antioxidants? Modriansky M, Tyurina YY, Tyurin VA, Matsura T, Shvedova AA, Yalowich JC, Kagan VE. Toxicology; 2002 Aug 01; 177(1):105-17. PubMed ID: 12126799 [Abstract] [Full Text] [Related]
22. Glutathione and ascorbate reduction of the acetaminophen radical formed by peroxidase. Detection of the glutathione disulfide radical anion and the ascorbyl radical. Ramakrishna Rao DN, Fischer V, Mason RP. J Biol Chem; 1990 Jan 15; 265(2):844-7. PubMed ID: 2153116 [Abstract] [Full Text] [Related]
23. Recycling and redox cycling of phenolic antioxidants. Kagan VE, Tyurina YY. Ann N Y Acad Sci; 1998 Nov 20; 854():425-34. PubMed ID: 9928449 [Abstract] [Full Text] [Related]
24. Generation of probucol radicals and their reduction by ascorbate and dihydrolipoic acid in human low density lipoproteins. Kagan VE, Freisleben HJ, Tsuchiya M, Forte T, Packer L. Free Radic Res Commun; 1991 Nov 20; 15(5):265-76. PubMed ID: 1666624 [Abstract] [Full Text] [Related]
25. Peroxidase-catalyzed oxidation of beta-carotene in HL-60 cells and in model systems: involvement of phenoxyl radicals. Tyurin VA, Carta G, Tyurina YY, Banni S, Day BW, Corongiu FP, Kagan VE. Lipids; 1997 Feb 20; 32(2):131-42. PubMed ID: 9075202 [Abstract] [Full Text] [Related]
26. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Sakihama Y, Cohen MF, Grace SC, Yamasaki H. Toxicology; 2002 Aug 01; 177(1):67-80. PubMed ID: 12126796 [Abstract] [Full Text] [Related]
27. ESR studies of ascorbic acid-dependent recycling of the vitamin E homologue Trolox by coenzyme Q0 in murine skin homogenates. Guo Q, Packer L. Redox Rep; 1999 Aug 01; 4(3):105-11. PubMed ID: 10496413 [Abstract] [Full Text] [Related]
28. Semi-quinone formation from the catechol and ortho-quinone metabolites of the antitumor agent VP-16-213. van Maanen JM, Verkerk UH, Broersen J, Lafleur MV, De Vries J, Retèl J, Pinedo HM. Free Radic Res Commun; 1988 Aug 01; 4(6):371-84. PubMed ID: 2854106 [Abstract] [Full Text] [Related]
29. Ascorbate interacts with reduced glutathione to scavenge phenoxyl radicals in HL60 cells. Cuddihy SL, Parker A, Harwood DT, Vissers MC, Winterbourn CC. Free Radic Biol Med; 2008 Apr 15; 44(8):1637-44. PubMed ID: 18291121 [Abstract] [Full Text] [Related]
30. Interactions of the antitumor drug, etoposide, with reduced thiols in vitro and in vivo. Katki AG, Kalyanaraman B, Sinha BK. Chem Biol Interact; 1987 Apr 15; 62(3):237-47. PubMed ID: 3040275 [Abstract] [Full Text] [Related]
31. Direct oxidation of polyunsaturated cis-parinaric fatty acid by phenoxyl radicals generated by peroxidase/H2O2 in model systems and in HL-60 cells. Ritov VB, Menshikova EV, Goldman R, Kagan VE. Toxicol Lett; 1996 Oct 15; 87(2-3):121-9. PubMed ID: 8914620 [Abstract] [Full Text] [Related]
32. Reduction of phenoxyl radicals by thioredoxin results in selective oxidation of its SH-groups to disulfides. An antioxidant function of thioredoxin. Goldman R, Stoyanovsky DA, Day BW, Kagan VE. Biochemistry; 1995 Apr 11; 34(14):4765-72. PubMed ID: 7718583 [Abstract] [Full Text] [Related]
33. Reactive oxygen species generated from the reaction of copper(II) complexes with biological reductants cause DNA strand scission. Ueda J, Takai M, Shimazu Y, Ozawa T. Arch Biochem Biophys; 1998 Sep 15; 357(2):231-9. PubMed ID: 9735163 [Abstract] [Full Text] [Related]
34. Reduced phosphorylation of topoisomerase II in etoposide-resistant human leukemia K562 cells. Ritke MK, Allan WP, Fattman C, Gunduz NN, Yalowich JC. Mol Pharmacol; 1994 Jul 15; 46(1):58-66. PubMed ID: 8058057 [Abstract] [Full Text] [Related]
35. The effects of nitric oxide or oxygen on the stable products formed from the tyrosine phenoxyl radical. Folkes LK, Bartesaghi S, Trujillo M, Wardman P, Radi R. Free Radic Res; 2021 Feb 15; 55(2):141-153. PubMed ID: 33399021 [Abstract] [Full Text] [Related]
36. Spin stabilizing approach to radical characterization of phenylpropanoid antioxidants: an ESR study of chlorogenic acid oxidation in the horseradish peroxidase, tyrosinase, and ferrylmyoglobin protein radical systems. Grace SC, Yamasaki H, Pryor WA. Basic Life Sci; 1999 Feb 15; 66():435-50. PubMed ID: 10800455 [No Abstract] [Full Text] [Related]
37. Hypophosphorylation of topoisomerase II in etoposide (VP-16)-resistant human leukemia K562 cells associated with reduced levels of beta II protein kinase C. Ritke MK, Murray NR, Allan WP, Fields AP, Yalowich JC. Mol Pharmacol; 1995 Nov 15; 48(5):798-805. PubMed ID: 7476909 [Abstract] [Full Text] [Related]
38. Role of the semi-quinone free radical of the anti-tumour agent etoposide (VP-16-213) in the inactivation of single- and double-stranded phi X174 DNA. Mans DR, Retèl J, van Maanen JM, Lafleur MV, van Schaik MA, Pinedo HM, Lankelma J. Br J Cancer; 1990 Jul 15; 62(1):54-60. PubMed ID: 2167725 [Abstract] [Full Text] [Related]
39. Differential induction of etoposide-mediated apoptosis in human leukemia HL-60 and K562 cells. Ritke MK, Rusnak JM, Lazo JS, Allan WP, Dive C, Heer S, Yalowich JC. Mol Pharmacol; 1994 Oct 15; 46(4):605-11. PubMed ID: 7969039 [Abstract] [Full Text] [Related]
40. Phenoxyl free radical formation during the oxidation of the fluorescent dye 2',7'-dichlorofluorescein by horseradish peroxidase. Possible consequences for oxidative stress measurements. Rota C, Fann YC, Mason RP. J Biol Chem; 1999 Oct 01; 274(40):28161-8. PubMed ID: 10497168 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]