These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


310 related items for PubMed ID: 8172890

  • 1. Active-site mutations of the diphtheria toxin catalytic domain: role of histidine-21 in nicotinamide adenine dinucleotide binding and ADP-ribosylation of elongation factor 2.
    Blanke SR, Huang K, Wilson BA, Papini E, Covacci A, Collier RJ.
    Biochemistry; 1994 May 03; 33(17):5155-61. PubMed ID: 8172890
    [Abstract] [Full Text] [Related]

  • 2. Active-site mutations of diphtheria toxin: role of tyrosine-65 in NAD binding and ADP-ribosylation.
    Blanke SR, Huang K, Collier RJ.
    Biochemistry; 1994 Dec 27; 33(51):15494-500. PubMed ID: 7803411
    [Abstract] [Full Text] [Related]

  • 3. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide.
    Bell CE, Eisenberg D.
    Biochemistry; 1996 Jan 30; 35(4):1137-49. PubMed ID: 8573568
    [Abstract] [Full Text] [Related]

  • 4. Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin.
    Parikh SL, Schramm VL.
    Biochemistry; 2004 Feb 10; 43(5):1204-12. PubMed ID: 14756556
    [Abstract] [Full Text] [Related]

  • 5. Active-site mutations of diphtheria toxin: effects of replacing glutamic acid-148 with aspartic acid, glutamine, or serine.
    Wilson BA, Reich KA, Weinstein BR, Collier RJ.
    Biochemistry; 1990 Sep 18; 29(37):8643-51. PubMed ID: 1980208
    [Abstract] [Full Text] [Related]

  • 6. Characterization of the endogenous ADP-ribosylation of wild-type and mutant elongation factor 2 in eukaryotic cells.
    Fendrick JL, Iglewski WJ, Moehring JM, Moehring TJ.
    Eur J Biochem; 1992 Apr 01; 205(1):25-31. PubMed ID: 1313365
    [Abstract] [Full Text] [Related]

  • 7. Diphtheria toxin NAD affinity and ADP ribosyltransferase activity are reduced at tryptophan 153 substitutions for alanine or phenylalanine.
    Zdanovskaia MV, Zdanovsky AG, Yankovsky NK.
    Res Microbiol; 2000 Sep 01; 151(7):557-62. PubMed ID: 11037133
    [Abstract] [Full Text] [Related]

  • 8. Role of histidine 35 of the S1 subunit of pertussis toxin in the ADP-ribosylation of transducin.
    Xu Y, Barbançon-Finck V, Barbieri JT.
    J Biol Chem; 1994 Apr 01; 269(13):9993-9. PubMed ID: 8144593
    [Abstract] [Full Text] [Related]

  • 9. 1-N6-Etheno-ADP-ribosylation of elongation factor-2 by diphtheria toxin.
    Giovane A, Balestrieri C, Quagliuolo L, Servillo L.
    FEBS Lett; 1985 Oct 28; 191(2):191-4. PubMed ID: 2996930
    [Abstract] [Full Text] [Related]

  • 10. Diphtheria toxin. Site and configuration of ADP-ribosylation of diphthamide in elongation factor 2.
    Oppenheimer NJ, Bodley JW.
    J Biol Chem; 1981 Aug 25; 256(16):8579-81. PubMed ID: 6267047
    [Abstract] [Full Text] [Related]

  • 11. Active-site mutations of diphtheria toxin. Tryptophan 50 is a major determinant of NAD affinity.
    Wilson BA, Blanke SR, Reich KA, Collier RJ.
    J Biol Chem; 1994 Sep 16; 269(37):23296-301. PubMed ID: 8083236
    [Abstract] [Full Text] [Related]

  • 12. Expression of non-ADP-ribosylatable, diphtheria toxin-resistant elongation factor 2 in Saccharomyces cerevisiae.
    Kimata Y, Harashima S, Kohno K.
    Biochem Biophys Res Commun; 1993 Mar 31; 191(3):1145-51. PubMed ID: 8466491
    [Abstract] [Full Text] [Related]

  • 13. The NAD-glycohydrolase activity of the pertussis toxin S1 subunit. Involvement of the catalytic HIS-35 residue.
    Antoine R, Locht C.
    J Biol Chem; 1994 Mar 04; 269(9):6450-7. PubMed ID: 8119996
    [Abstract] [Full Text] [Related]

  • 14. Reduced ribosomal binding of eukaryotic elongation factor 2 following ADP-ribosylation. Difference in binding selectivity between polyribosomes and reconstituted monoribosomes.
    Nygård O, Nilsson L.
    Biochim Biophys Acta; 1985 Feb 20; 824(2):152-62. PubMed ID: 3970930
    [Abstract] [Full Text] [Related]

  • 15. Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADP ribosylation.
    Li M, Dyda F, Benhar I, Pastan I, Davies DR.
    Proc Natl Acad Sci U S A; 1996 Jul 09; 93(14):6902-6. PubMed ID: 8692916
    [Abstract] [Full Text] [Related]

  • 16. Utilization of 2'-deoxynad for ADP-ribose transfer reactions.
    Wasson DB, Yamanaka H, Carson DA.
    Adv Exp Med Biol; 1989 Jul 09; 253B():213-8. PubMed ID: 2514587
    [Abstract] [Full Text] [Related]

  • 17. Endogenous ADP-ribosylation for eukaryotic elongation factor 2: evidence of two different sites and reactions.
    Bektaş M, Nurten R, Ergen K, Bermek E.
    Cell Biochem Funct; 2006 Jul 09; 24(4):369-80. PubMed ID: 16142694
    [Abstract] [Full Text] [Related]

  • 18. Investigation into the catalytic role for the tryptophan residues within domain III of Pseudomonas aeruginosa exotoxin A.
    Beattie BK, Prentice GA, Merrill AR.
    Biochemistry; 1996 Dec 03; 35(48):15134-42. PubMed ID: 8952460
    [Abstract] [Full Text] [Related]

  • 19. Diphtheria toxin and Pseudomonas aeruginosa exotoxin A: active-site structure and enzymic mechanism.
    Wilson BA, Collier RJ.
    Curr Top Microbiol Immunol; 1992 Dec 03; 175():27-41. PubMed ID: 1628498
    [No Abstract] [Full Text] [Related]

  • 20. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide.
    Bell CE, Eisenberg D.
    Adv Exp Med Biol; 1997 Dec 03; 419():35-43. PubMed ID: 9193634
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.