These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


445 related items for PubMed ID: 8176736

  • 21. Crystallographic analysis of Lac repressor bound to natural operator O1.
    Bell CE, Lewis M.
    J Mol Biol; 2001 Oct 05; 312(5):921-6. PubMed ID: 11580238
    [Abstract] [Full Text] [Related]

  • 22. Tandem binding in crystals of a trp repressor/operator half-site complex.
    Lawson CL, Carey J.
    Nature; 1993 Nov 11; 366(6451):178-82. PubMed ID: 8232559
    [Abstract] [Full Text] [Related]

  • 23. The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions.
    Glasfeld A, Koehler AN, Schumacher MA, Brennan RG.
    J Mol Biol; 1999 Aug 13; 291(2):347-61. PubMed ID: 10438625
    [Abstract] [Full Text] [Related]

  • 24. Functional roles of amino acid residues involved in forming the alpha-helix-turn-alpha-helix operator DNA binding motif of Tet repressor from Tn10.
    Baumeister R, Müller G, Hecht B, Hillen W.
    Proteins; 1992 Oct 13; 14(2):168-77. PubMed ID: 1409566
    [Abstract] [Full Text] [Related]

  • 25. DNA recognition by beta-sheets in the Arc repressor-operator crystal structure.
    Raumann BE, Rould MA, Pabo CO, Sauer RT.
    Nature; 1994 Feb 24; 367(6465):754-7. PubMed ID: 8107872
    [Abstract] [Full Text] [Related]

  • 26. Structural and functional studies of an intermediate on the pathway to operator binding by Escherichia coli MetJ.
    He YY, Garvie CW, Elworthy S, Manfield IW, McNally T, Lawrenson ID, Phillips SE, Stockley PG.
    J Mol Biol; 2002 Jun 28; 320(1):39-53. PubMed ID: 12079333
    [Abstract] [Full Text] [Related]

  • 27. Characterization of the lysogenic repressor (c) gene of the Pseudomonas aeruginosa transposable bacteriophage D3112.
    Salmon KA, Freedman O, Ritchings BW, DuBow MS.
    Virology; 2000 Jun 20; 272(1):85-97. PubMed ID: 10873751
    [Abstract] [Full Text] [Related]

  • 28. Structure of the LexA repressor-DNA complex probed by affinity cleavage and affinity photo-cross-linking.
    Dumoulin P, Ebright RH, Knegtel R, Kaptein R, Granger-Schnarr M, Schnarr M.
    Biochemistry; 1996 Apr 09; 35(14):4279-86. PubMed ID: 8605176
    [Abstract] [Full Text] [Related]

  • 29. One nanosecond molecular dynamics simulation of the N-terminal domain of the lambda repressor protein.
    Kombo DC, Young MA, Beveridge DL.
    Biopolymers; 2000 Jun 09; 53(7):596-605. PubMed ID: 10766954
    [Abstract] [Full Text] [Related]

  • 30. Transcriptional repressor CopR: structure model-based localization of the deoxyribonucleic acid binding motif.
    Steinmetzer K, Hillisch A, Behlke J, Brantl S.
    Proteins; 2000 Mar 01; 38(4):393-406. PubMed ID: 10707026
    [Abstract] [Full Text] [Related]

  • 31. The bacteriophage 434 right operator. Roles of O(R)1, O(R)2 and O(R)3.
    Bushman FD.
    J Mol Biol; 1993 Mar 05; 230(1):28-40. PubMed ID: 8450541
    [Abstract] [Full Text] [Related]

  • 32. Isolation and analysis of arc repressor mutants: evidence for an unusual mechanism of DNA binding.
    Vershon AK, Bowie JU, Karplus TM, Sauer RT.
    Proteins; 1986 Dec 05; 1(4):302-11. PubMed ID: 3449859
    [Abstract] [Full Text] [Related]

  • 33. Combinations of the alpha-helix-turn-alpha-helix motif of TetR with respective residues from LacI or 434Cro: DNA recognition, inducer binding, and urea-dependent denaturation.
    Backes H, Berens C, Helbl V, Walter S, Schmid FX, Hillen W.
    Biochemistry; 1997 May 06; 36(18):5311-22. PubMed ID: 9154913
    [Abstract] [Full Text] [Related]

  • 34. Structure of a phage 434 Cro/DNA complex.
    Wolberger C, Dong YC, Ptashne M, Harrison SC.
    Nature; 1988 Oct 27; 335(6193):789-95. PubMed ID: 3185709
    [Abstract] [Full Text] [Related]

  • 35. Refined structure of lac repressor headpiece (1-56) determined by relaxation matrix calculations from 2D and 3D NOE data: change of tertiary structure upon binding to the lac operator.
    Slijper M, Bonvin AM, Boelens R, Kaptein R.
    J Mol Biol; 1996 Jun 21; 259(4):761-73. PubMed ID: 8683581
    [Abstract] [Full Text] [Related]

  • 36. [Synthesis of nonlinear DNA-binding peptide with binding specificity determinants close to those of 434 Cro-repressor].
    Grokhovskiĭ SL, Surovaia AN, Sidorova NIu, Gurskiĭ GV.
    Mol Biol (Mosk); 1989 Jun 21; 23(6):1558-80. PubMed ID: 2633035
    [Abstract] [Full Text] [Related]

  • 37. DNA conformational changes associated with the cooperative binding of cI-repressor of bacteriophage lambda to OR.
    Strahs D, Brenowitz M.
    J Mol Biol; 1994 Dec 16; 244(5):494-510. PubMed ID: 7990137
    [Abstract] [Full Text] [Related]

  • 38. Water-mediated contacts in the trp-repressor operator complex recognition process.
    Wibowo FR, Rauch C, Trieb M, Wellenzohn B, Liedl KR.
    Biopolymers; 2004 Apr 15; 73(6):668-81. PubMed ID: 15048770
    [Abstract] [Full Text] [Related]

  • 39. Structural basis for operator and antirepressor recognition by Myxococcus xanthus CarA repressor.
    Navarro-Avilés G, Jiménez MA, Pérez-Marín MC, González C, Rico M, Murillo FJ, Elías-Arnanz M, Padmanabhan S.
    Mol Microbiol; 2007 Feb 15; 63(4):980-94. PubMed ID: 17233828
    [Abstract] [Full Text] [Related]

  • 40. A closer view of the conformation of the Lac repressor bound to operator.
    Bell CE, Lewis M.
    Nat Struct Biol; 2000 Mar 15; 7(3):209-14. PubMed ID: 10700279
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 23.