These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


228 related items for PubMed ID: 8178973

  • 1. Coupling of external to cellular respiration during exercise: the wisdom of the body revisited.
    Wasserman K.
    Am J Physiol; 1994 Apr; 266(4 Pt 1):E519-39. PubMed ID: 8178973
    [Abstract] [Full Text] [Related]

  • 2. A method for estimating bicarbonate buffering of lactic acid during constant work rate exercise.
    Zhang YY, Sietsema KE, Sullivan CS, Wasserman K.
    Eur J Appl Physiol Occup Physiol; 1994 Apr; 69(4):309-15. PubMed ID: 7851366
    [Abstract] [Full Text] [Related]

  • 3. Lactic acidosis as a facilitator of oxyhemoglobin dissociation during exercise.
    Stringer W, Wasserman K, Casaburi R, Pórszász J, Maehara K, French W.
    J Appl Physiol (1985); 1994 Apr; 76(4):1462-7. PubMed ID: 8045820
    [Abstract] [Full Text] [Related]

  • 4. Determination of the anaerobic threshold by gas exchange: biochemical considerations, methodology and physiological effects.
    Wasserman K, Stringer WW, Casaburi R, Koike A, Cooper CB.
    Z Kardiol; 1994 Apr; 83 Suppl 3():1-12. PubMed ID: 7941654
    [Abstract] [Full Text] [Related]

  • 5. The VCO2/VO2 relationship during heavy, constant work rate exercise reflects the rate of lactic acid accumulation.
    Stringer W, Wasserman K, Casaburi R.
    Eur J Appl Physiol Occup Physiol; 1995 Apr; 72(1-2):25-31. PubMed ID: 8789566
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Coupling of external to internal respiration.
    Wasserman K.
    Am Rev Respir Dis; 1984 Feb; 129(2 Pt 2):S21-4. PubMed ID: 6421214
    [Abstract] [Full Text] [Related]

  • 8. Ventilation and blood lactate increase exponentially during incremental exercise.
    Dennis SC, Noakes TD, Bosch AN.
    J Sports Sci; 1992 Oct; 10(5):437-49. PubMed ID: 1433461
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Effects of glycogen depletion and work load on postexercise O2 consumption and blood lactate.
    Segal SS, Brooks GA.
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Sep; 47(3):514-21. PubMed ID: 533743
    [Abstract] [Full Text] [Related]

  • 11. Evidence that diffusion limitation determines oxygen uptake kinetics during exercise in humans.
    Koike A, Wasserman K, McKenzie DK, Zanconato S, Weiler-Ravell D.
    J Clin Invest; 1990 Nov; 86(5):1698-706. PubMed ID: 2122982
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. The reduction by training of CO2 output during exercise.
    Taylor R, Jones NL.
    Eur J Cardiol; 1979 Jan; 9(1):53-62. PubMed ID: 759188
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Influence of work rate on ventilatory and gas exchange kinetics.
    Casaburi R, Barstow TJ, Robinson T, Wasserman K.
    J Appl Physiol (1985); 1989 Aug; 67(2):547-55. PubMed ID: 2793656
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.