These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


168 related items for PubMed ID: 8186147

  • 1. Ligand-dependent stimulation of introduced mammalian brain receptors alters spicule symmetry and other morphogenetic events in sea urchin embryos.
    Cameron RA, Smith LC, Britten RJ, Davidson EH.
    Mech Dev; 1994 Jan; 45(1):31-47. PubMed ID: 8186147
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks.
    Amore G, Yavrouian RG, Peterson KJ, Ransick A, McClay DR, Davidson EH.
    Dev Biol; 2003 Sep 01; 261(1):55-81. PubMed ID: 12941621
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo.
    Ransick A, Davidson EH.
    Dev Biol; 1998 Mar 01; 195(1):38-48. PubMed ID: 9520322
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Expression of S9 and actin CyIIa mRNAs reveals dorso-ventral polarity and mesodermal sublineages in the vegetal plate of the sea urchin embryo.
    Miller RN, Dalamagas DG, Kingsley PD, Ettensohn CA.
    Mech Dev; 1996 Nov 01; 60(1):3-12. PubMed ID: 9025057
    [Abstract] [Full Text] [Related]

  • 9. Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species.
    Wikramanayake AH, Brandhorst BP, Klein WH.
    Development; 1995 May 01; 121(5):1497-505. PubMed ID: 7789279
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Determination and morphogenesis in the sea urchin embryo.
    Wilt FH.
    Development; 1987 Aug 01; 100(4):559-76. PubMed ID: 3443047
    [Abstract] [Full Text] [Related]

  • 12. The regulation of primary mesenchyme cell migration in the sea urchin embryo: transplantations of cells and latex beads.
    Ettensohn CA, McClay DR.
    Dev Biol; 1986 Oct 01; 117(2):380-91. PubMed ID: 3758478
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo.
    Wikramanayake AH, Klein WH.
    Development; 1997 Jan 01; 124(1):13-20. PubMed ID: 9006063
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Disruption of gastrulation and oral-aboral ectoderm differentiation in the Lytechinus pictus embryo by a dominant/negative PDGF receptor.
    Ramachandran RK, Wikramanayake AH, Uzman JA, Govindarajan V, Tomlinson CR.
    Development; 1997 Jun 01; 124(12):2355-64. PubMed ID: 9199362
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes.
    Angerer LM, Oleksyn DW, Levine AM, Li X, Klein WH, Angerer RC.
    Development; 2001 Nov 01; 128(22):4393-404. PubMed ID: 11714666
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.