These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
114 related items for PubMed ID: 8189316
1. [Effects of acoustic overstimulation of 2F1-F2 distortion product in cochlear microphonics]. Yoshida M, Aoyagi M, Makishima K. Nihon Jibiinkoka Gakkai Kaiho; 1994 Apr; 97(4):680-3. PubMed ID: 8189316 [Abstract] [Full Text] [Related]
2. Effects of acoustic overstimulation on 2f1-f2 distortion product in the cochlear microphonics. Yoshida M, Aoyagi M, Makishima K. Hear Res; 1995 Jan; 82(1):59-64. PubMed ID: 7744714 [Abstract] [Full Text] [Related]
4. Intensity-dependent changes in oxygenation of cochlear perilymph during acoustic exposure. Scheibe F, Haupt H, Ludwig C. Hear Res; 1992 Nov; 63(1-2):19-25. PubMed ID: 1464569 [Abstract] [Full Text] [Related]
5. Intensity-related changes in cochlear blood flow in the guinea pig during and following acoustic exposure. Scheibe F, Haupt H, Ludwig C. Eur Arch Otorhinolaryngol; 1993 Nov; 250(5):281-5. PubMed ID: 8217130 [Abstract] [Full Text] [Related]
6. Effects on cochlear microphonics in guinea pigs induced by prolonged exposure to low-frequency sound. Maehara N, Sadamoto T, Yamamura K. Eur J Appl Physiol Occup Physiol; 1984 Nov; 52(3):305-9. PubMed ID: 6539683 [Abstract] [Full Text] [Related]
7. The influence of systematic primary-tone level variation L2-L1 on the acoustic distortion product emission 2f1-f2 in normal human ears. Hauser R, Probst R. J Acoust Soc Am; 1991 Jan; 89(1):280-6. PubMed ID: 2002169 [Abstract] [Full Text] [Related]
8. Electrophysiological responses in guinea pig cochlea to low frequency sound stimuli: distortion of cochlear microphonic (CM) wave form. Maehara N, Sadamoto T, Yamamura K. Eur J Appl Physiol Occup Physiol; 1983 Jan; 51(1):85-95. PubMed ID: 6684037 [Abstract] [Full Text] [Related]
9. Cochlear microphonic evidence for mechanical propagation of distortion products (f2 - f1) and (2f1 - f2). Gibian GL, Kim DO. Hear Res; 1982 Jan; 6(1):35-59. PubMed ID: 7054135 [Abstract] [Full Text] [Related]
10. The effects of continuous versus interrupted noise exposures on distortion product otoacoustic emissions in guinea pigs. Chang KW, Norton SJ. Hear Res; 1996 Jul; 96(1-2):1-12. PubMed ID: 8817301 [Abstract] [Full Text] [Related]
11. Effect of the middle ear reflex on sound transmission to the inner ear of rat. Pilz PK, Ostwald J, Kreiter A, Schnitzler HU. Hear Res; 1997 Mar; 105(1-2):171-82. PubMed ID: 9083814 [Abstract] [Full Text] [Related]
12. Fine alterations of distortion-product otoacoustic emissions after moderate acoustic overexposure in guinea pigs. Kossowski M, Mom T, Guitton M, Poncet JL, Bonfils P, Avan P. Audiology; 2001 Mar; 40(3):113-22. PubMed ID: 11465293 [Abstract] [Full Text] [Related]
13. The effects of low-frequency ultrasound on the inner ear: an electrophysiological study using the guinea pig cochlea. Ishida A, Matsui T, Yamamura K. Eur Arch Otorhinolaryngol; 1993 Mar; 250(1):22-6. PubMed ID: 8466746 [Abstract] [Full Text] [Related]
15. Identification of the nonlinearity governing even-order distortion products in cochlear potentials. van Emst MG, Klis SF, Smoorenburg GF. Hear Res; 1997 Dec; 114(1-2):93-101. PubMed ID: 9447923 [Abstract] [Full Text] [Related]
16. The effect of endocochlear potential suppression upon susceptibility to acoustic trauma. Kanno H, Ohtani I, Hara A, Kusakari J. Acta Otolaryngol; 1993 Jan; 113(1):26-30. PubMed ID: 8442418 [Abstract] [Full Text] [Related]
17. Tuning curves of the difference tone auditory nerve neurophonic. Henry KR. Hear Res; 1996 Sep 15; 99(1-2):160-7. PubMed ID: 8970824 [Abstract] [Full Text] [Related]
18. The behavior of acoustic distortion products in the ear canals of chinchillas with normal or damaged ears. Zurek PM, Clark WW, Kim DO. J Acoust Soc Am; 1982 Sep 15; 72(3):774-80. PubMed ID: 7130536 [Abstract] [Full Text] [Related]