These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


142 related items for PubMed ID: 8194079

  • 1. Ca(2+)-dependent K+ channel activity in rat glioma cells induced by bradykinin stimulation and by inositol 1,4,5-trisphosphate injection.
    Binmöller FJ, Reiser G.
    Cell Mol Neurobiol; 1993 Dec; 13(6):615-24. PubMed ID: 8194079
    [Abstract] [Full Text] [Related]

  • 2. Activation of a K+ conductance by bradykinin and by inositol-1,4,5-trisphosphate in rat glioma cells: involvement of intracellular and extracellular Ca2+.
    Reiser G, Binmöller FJ, Strong PN, Hamprecht B.
    Brain Res; 1990 Jan 08; 506(2):205-14. PubMed ID: 2302562
    [Abstract] [Full Text] [Related]

  • 3. The regulatory influence of bradykinin and inositol-1,4,5-trisphosphate on the membrane potential in neural cell lines.
    Reiser G, Binmöller FJ, Hamprecht B.
    Biomed Biochim Acta; 1987 Jan 08; 46(8-9):S682-7. PubMed ID: 2449200
    [Abstract] [Full Text] [Related]

  • 4. Ca2+-dependent K+ channels in neuroblastoma hybrid cells activated by intracellular inositol trisphosphate and extracellular bradykinin.
    Higashida H, Brown DA.
    FEBS Lett; 1988 Oct 10; 238(2):395-400. PubMed ID: 3262538
    [Abstract] [Full Text] [Related]

  • 5. Bradykinin and muscarine induce Ca(2+)-dependent oscillations of membrane potential in rat glioma cells indicating a rhythmic Ca2+ release from internal stores: thapsigargin and 2,5-di(tert-butyl)-1, 4-benzohydroquinone deplete InsP3-sensitive Ca2+ stores in glioma and in neuroblastoma-glioma hybrid cells.
    Reiser G, Cesar M, Binmöller FJ.
    Exp Cell Res; 1992 Oct 10; 202(2):440-9. PubMed ID: 1397096
    [Abstract] [Full Text] [Related]

  • 6. The effects of bradykinin on K+ currents in NG108-15 cells treated with U73122, a phospholipase C inhibitor, or neomycin.
    Hildebrandt JP, Plant TD, Meves H.
    Br J Pharmacol; 1997 Mar 10; 120(5):841-50. PubMed ID: 9138690
    [Abstract] [Full Text] [Related]

  • 7. Bradykinin-activated transmembrane signals are coupled via No or Ni to production of inositol 1,4,5-trisphosphate, a second messenger in NG108-15 neuroblastoma-glioma hybrid cells.
    Higashida H, Streaty RA, Klee W, Nirenberg M.
    Proc Natl Acad Sci U S A; 1986 Feb 10; 83(4):942-6. PubMed ID: 3081891
    [Abstract] [Full Text] [Related]

  • 8. Effects of bradykinin on ion conductances in NG108-15 neuroblastoma x glioma hybrid cells recorded with patch-clamp electrodes.
    Robbins J, McFadzean I, Brown DA.
    Agents Actions Suppl; 1992 Feb 10; 38 ( Pt 2)():98-107. PubMed ID: 1281376
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Modelling the electrophysiological endothelial cell response to bradykinin.
    Schuster A, Bény JL, Meister JJ.
    Eur Biophys J; 2003 Jul 10; 32(4):370-80. PubMed ID: 12851795
    [Abstract] [Full Text] [Related]

  • 11. Bradykinin-evoked acetylcholine release via inositol trisphosphate-dependent elevation in free calcium in neuroblastoma x glioma hybrid NG108-15 cells.
    Ogura A, Myojo Y, Higashida H.
    J Biol Chem; 1990 Feb 25; 265(6):3577-84. PubMed ID: 2303464
    [Abstract] [Full Text] [Related]

  • 12. [Ca2+]i oscillations induced by bradykinin in rat glioma cells associated with Ca2+ store-dependent Ca2+ influx are controlled by cell volume and by membrane potential.
    Reetz G, Reiser G.
    Cell Calcium; 1996 Feb 25; 19(2):143-56. PubMed ID: 8689672
    [Abstract] [Full Text] [Related]

  • 13. IP3 receptor purified from liver plasma membrane is an (1,4,5)IP3 activated and (1,3,4,5)IP4 inhibited calcium permeable ion channel.
    Mayrleitner M, Schäfer R, Fleischer S.
    Cell Calcium; 1995 Feb 25; 17(2):141-53. PubMed ID: 7736563
    [Abstract] [Full Text] [Related]

  • 14. Ca(2+)-dependent non-selective cation and potassium channels activated by bradykinin in pig coronary artery endothelial cells.
    Baron A, Frieden M, Chabaud F, Bény JL.
    J Physiol; 1996 Jun 15; 493 ( Pt 3)(Pt 3):691-706. PubMed ID: 8799892
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca(2+)-permeable channel.
    Lückhoff A, Clapham DE.
    Nature; 1992 Jan 23; 355(6358):356-8. PubMed ID: 1309941
    [Abstract] [Full Text] [Related]

  • 18. Mobilization of inositol 1,4,5-trisphosphate-sensitive Ca2+ stores supports bradykinin- and muscarinic-evoked release of [3H] noradrenaline from SH-SY5Y cells.
    Purkiss JR, Nahorski SR, Willars GB.
    J Neurochem; 1995 Mar 23; 64(3):1175-82. PubMed ID: 7861149
    [Abstract] [Full Text] [Related]

  • 19. Vectorial Ca2+ flux from the extracellular space to the endoplasmic reticulum via a restricted cytoplasmic compartment regulates inositol 1,4,5-trisphosphate-stimulated Ca2+ release from internal stores in vascular endothelial cells.
    Cabello OA, Schilling WP.
    Biochem J; 1993 Oct 15; 295 ( Pt 2)(Pt 2):357-66. PubMed ID: 8240234
    [Abstract] [Full Text] [Related]

  • 20. Depletion of the inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ store in vascular endothelial cells activates the agonist-sensitive Ca(2+)-influx pathway.
    Schilling WP, Cabello OA, Rajan L.
    Biochem J; 1992 Jun 01; 284 ( Pt 2)(Pt 2):521-30. PubMed ID: 1318033
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.