These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 819424

  • 1. Uptake of branched-chain alpha-keto acids in Bacillus subtilis.
    Goldstein BJ, Zahler SA.
    J Bacteriol; 1976 Jul; 127(1):667-70. PubMed ID: 819424
    [Abstract] [Full Text] [Related]

  • 2. Common enzymes of branched-chain amino acid catabolism in Pseudomonas putida.
    Martin RR, Marshall VD, Sokatch JR, Unger L.
    J Bacteriol; 1973 Jul; 115(1):198-204. PubMed ID: 4352175
    [Abstract] [Full Text] [Related]

  • 3. Repression and inhibition of transport systems for branched-chain amino acids in Salmonella typhimurium.
    Kiritani K, Ohnishi K.
    J Bacteriol; 1977 Feb; 129(2):589-98. PubMed ID: 320186
    [Abstract] [Full Text] [Related]

  • 4. Regulation of valine catabolism in Pseudomonas putida.
    Marshall VD, Sokatch JR.
    J Bacteriol; 1972 Jun; 110(3):1073-81. PubMed ID: 5030618
    [Abstract] [Full Text] [Related]

  • 5. [Reamination and reductive amination in virulent strains of tuberculosis mycobacteria].
    Kariakina LA, Lazovskaia AL.
    Ukr Biokhim Zh; 1966 Jun; 38(5):490-4. PubMed ID: 4969652
    [No Abstract] [Full Text] [Related]

  • 6. Fatty acid-requiring mutant of bacillus subtilis defective in branched chain alpha-keto acid dehydrogenase.
    Willecke K, Pardee AB.
    J Biol Chem; 1971 Sep 10; 246(17):5264-72. PubMed ID: 4999353
    [No Abstract] [Full Text] [Related]

  • 7. Metabolism of alpha-keto analogues of essential amino acids.
    Nutr Rev; 1974 May 10; 32(5):147-9. PubMed ID: 4597511
    [No Abstract] [Full Text] [Related]

  • 8. Biosynthesis of branched long-chain fatty acids by species of Bacillus: relative activity of three alpha-keto acid substrates and factors affecting chain length.
    Naik DN, Kaneda T.
    Can J Microbiol; 1974 Dec 10; 20(12):1701-8. PubMed ID: 4155346
    [No Abstract] [Full Text] [Related]

  • 9. Transient and long-term differential modulations of branched-chain alpha-keto acid decarboxylase activity in hypophysectomized rats.
    Sullivan SG, Dancis J, Cox RP.
    Biochim Biophys Acta; 1978 Mar 01; 539(2):135-41. PubMed ID: 629995
    [Abstract] [Full Text] [Related]

  • 10. Valine metabolism in vivo: effects of high dietary levels of leucine and isoleucine.
    Block KP, Harper AE.
    Metabolism; 1984 Jun 01; 33(6):559-66. PubMed ID: 6727655
    [Abstract] [Full Text] [Related]

  • 11. Utilization of the L- and DL-isomers of alpha-keto-beta-methylvaleric acid by rats and comparative efficacy of the keto analogs of branched-chain amino acids provided as ornithine, lysine and histidine salts.
    Funk MA, Lowry KR, Baker DH.
    J Nutr; 1987 Sep 01; 117(9):1550-5. PubMed ID: 3116181
    [Abstract] [Full Text] [Related]

  • 12. High levels of dietary amino and branched-chain alpha-keto acids alter plasma and brain amino acid concentrations in rats.
    Block KP, Harper AE.
    J Nutr; 1991 May 01; 121(5):663-71. PubMed ID: 2019876
    [Abstract] [Full Text] [Related]

  • 13. Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis.
    Debarbouille M, Gardan R, Arnaud M, Rapoport G.
    J Bacteriol; 1999 Apr 01; 181(7):2059-66. PubMed ID: 10094682
    [Abstract] [Full Text] [Related]

  • 14. Alpha-keto acid metabolism by hepatocytes cultured in a hybrid liver support bioreactor.
    Fuchs M, Gerlach J, Unger J, Encke J, Smith M, Neuhaus P, Nündel M, Riedel E.
    Int J Artif Organs; 1994 Oct 01; 17(10):554-8. PubMed ID: 7896430
    [Abstract] [Full Text] [Related]

  • 15. Effects of branched-chain amino acid antagonism in the rat on tissue amino acid and keto acid concentrations.
    Shinnick FL, Harper AE.
    J Nutr; 1977 May 01; 107(5):887-95. PubMed ID: 870654
    [Abstract] [Full Text] [Related]

  • 16. [The formation of higher alcohols by amino acid auxotrophic mutants of Saccharomyces cerevisiae. II. The influence of threonine, isoleucine, valine and leucine (author's transl)].
    Vollbrecht D.
    Arch Microbiol; 1974 Apr 19; 97(2):149-62. PubMed ID: 4599697
    [No Abstract] [Full Text] [Related]

  • 17. Some physiological functions of the L-leucine dehydrogenase in Bacillus subtilis.
    Obermeier N, Poralla K.
    Arch Microbiol; 1976 Aug 19; 109(1-2):59-63. PubMed ID: 822797
    [Abstract] [Full Text] [Related]

  • 18. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus.
    Beck HC, Hansen AM, Lauritsen FR.
    J Appl Microbiol; 2004 Aug 19; 96(5):1185-93. PubMed ID: 15078537
    [Abstract] [Full Text] [Related]

  • 19. Metabolism of branched-chain keto acids in neonatal rat liver perfusions.
    Frost SC, Wells MA.
    Arch Biochem Biophys; 1983 Oct 15; 226(2):425-32. PubMed ID: 6639066
    [Abstract] [Full Text] [Related]

  • 20. Transamination and oxidation of leucine and valine in rat adipose tissue.
    Frick GP, Blinder L, Goodman HM.
    J Biol Chem; 1988 Mar 05; 263(7):3245-9. PubMed ID: 3125177
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.