These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Metabolism-based covalent bonding of the heme prosthetic group to its apoprotein during the reductive debromination of BrCCl3 by myoglobin. Osawa Y, Martin BM, Griffin PR, Yates JR, Shabanowitz J, Hunt DF, Murphy AC, Chen L, Cotter RJ, Pohl LR. J Biol Chem; 1990 Jun 25; 265(18):10340-6. PubMed ID: 2355004 [Abstract] [Full Text] [Related]
3. Characterization by NMR of the heme-myoglobin adduct formed during the reductive metabolism of BrCCl3. Covalent bonding of the proximal histidine to the ring I vinyl group. Osawa Y, Highet RJ, Bax A, Pohl LR. J Biol Chem; 1991 Feb 15; 266(5):3208-14. PubMed ID: 1993694 [Abstract] [Full Text] [Related]
4. Covalent alteration of the prosthetic heme of human hemoglobin by BrCCl3. Cross-linking of heme to cysteine residue 93. Kindt JT, Woods A, Martin BM, Cotter RJ, Osawa Y. J Biol Chem; 1992 May 05; 267(13):8739-43. PubMed ID: 1577716 [Abstract] [Full Text] [Related]
5. Metabolism-based transformation of myoglobin to an oxidase by BrCCl3 and molecular modeling of the oxidase form. Osawa Y, Darbyshire JF, Steinbach PJ, Brooks BR. J Biol Chem; 1993 Feb 05; 268(4):2953-9. PubMed ID: 8428969 [Abstract] [Full Text] [Related]
6. Heme oxygenase active-site residues identified by heme-protein cross-linking during reduction of CBrCl3. Wilks A, Medzihradszky KF, Ortiz de Montellano PR. Biochemistry; 1998 Mar 03; 37(9):2889-96. PubMed ID: 9485440 [Abstract] [Full Text] [Related]
7. Substitution of the heme binding module in hemoglobin alpha- and beta-subunits. Implication for different regulation mechanisms of the heme proximal structure between hemoglobin and myoglobin. Inaba K, Ishimori K, Imai K, Morishima I. J Biol Chem; 2000 Apr 28; 275(17):12438-45. PubMed ID: 10777528 [Abstract] [Full Text] [Related]
8. Magnetic resonance studies of the binding of 13C-labeled carbon monoxide to myoglobins and hemoglobins containing modified hemes. Moon RB, Dill K, Richards JH. Biochemistry; 1977 Jan 25; 16(2):221-8. PubMed ID: 13807 [Abstract] [Full Text] [Related]
14. Immobilized apo-myoglobin, a new stable reagent for measuring rates of heme dissociation from hemoglobin. Gattoni M, Boffi A, Chiancone E. FEBS Lett; 1998 Mar 13; 424(3):275-8. PubMed ID: 9539166 [Abstract] [Full Text] [Related]
15. 1H-NMR study of the mechanism of assembly and equilibrium heme orientation of sperm whale myoglobin reconstituted with protohemin type-isomers. Hauksson JB, La Mar GN, Pande U, Pandey RK, Parish DW, Singh JP, Smith KM. Biochim Biophys Acta; 1990 Nov 15; 1041(2):186-94. PubMed ID: 2265204 [Abstract] [Full Text] [Related]
16. Hemoglobin dynamics in rat erythrocytes investigated by Mössbauer spectroscopy. Frolov EN, Fischer M, Graffweg E, Mirishly MA, Goldanskii VI, Parak FG. Eur Biophys J; 1991 Nov 15; 19(5):253-6. PubMed ID: 2060496 [Abstract] [Full Text] [Related]
17. Altered sulfhydryl reactivity of hemoglobins and red blood cell membranes in congenital Heinz body hemolytic anemia. Jacob HS, Brain MC, Dacie JV. J Clin Invest; 1968 Dec 15; 47(12):2664-77. PubMed ID: 5725279 [Abstract] [Full Text] [Related]
18. Detailed NMR analysis of the heme-protein interactions in component IV Glycera dibranchiata monomeric hemoglobin-CO. Alam SL, Volkman BF, Markley JL, Satterlee JD. J Biomol NMR; 1998 Feb 15; 11(2):119-33. PubMed ID: 9679291 [Abstract] [Full Text] [Related]