These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


74 related items for PubMed ID: 8195793

  • 1. Proteolytic activity, synapse elimination, and the Hebb synapse.
    Liu Y, Fields RD, Fitzgerald S, Festoff BW, Nelson PG.
    J Neurobiol; 1994 Mar; 25(3):325-35. PubMed ID: 8195793
    [Abstract] [Full Text] [Related]

  • 2. Nip and tuck at the neuromuscular junction: a role for proteases in developmental synapse elimination.
    Chang Q, Balice-Gordon RJ.
    Bioessays; 1997 Apr; 19(4):271-5. PubMed ID: 9136623
    [Abstract] [Full Text] [Related]

  • 3. Synapse elimination from the mouse neuromuscular junction in vitro: a non-Hebbian activity-dependent process.
    Nelson PG, Fields RD, Yu C, Liu Y.
    J Neurobiol; 1993 Nov; 24(11):1517-30. PubMed ID: 8283186
    [Abstract] [Full Text] [Related]

  • 4. Plasminogen activators and inhibitors in the neuromuscular system: III. The serpin protease nexin I is synthesized by muscle and localized at neuromuscular synapses.
    Festoff BW, Rao JS, Hantaï D.
    J Cell Physiol; 1991 Apr; 147(1):76-86. PubMed ID: 2037625
    [Abstract] [Full Text] [Related]

  • 5. Synaptic plasticity: taming the beast.
    Abbott LF, Nelson SB.
    Nat Neurosci; 2000 Nov; 3 Suppl():1178-83. PubMed ID: 11127835
    [Abstract] [Full Text] [Related]

  • 6. A model synapse that incorporates the properties of short- and long-term synaptic plasticity.
    Sargsyan AR, Melkonyan AA, Papatheodoropoulos C, Mkrtchian HH, Kostopoulos GK.
    Neural Netw; 2003 Oct; 16(8):1161-77. PubMed ID: 13678620
    [Abstract] [Full Text] [Related]

  • 7. Thrombin, its receptor and protease nexin I, its potent serpin, in the nervous system.
    Festoff BW, Smirnova IV, Ma J, Citron BA.
    Semin Thromb Hemost; 1996 Oct; 22(3):267-71. PubMed ID: 8836012
    [Abstract] [Full Text] [Related]

  • 8. Neural activity, neuron-glia relationships, and synapse development.
    Nelson PG, Fields RD, Liu Y.
    Perspect Dev Neurobiol; 1995 Oct; 2(4):399-407. PubMed ID: 7757409
    [Abstract] [Full Text] [Related]

  • 9. Diabetes-, stress- and ageing-related changes in synaptic plasticity in hippocampus and neocortex--the same metaplastic process?
    Artola A.
    Eur J Pharmacol; 2008 May 06; 585(1):153-62. PubMed ID: 18395200
    [Abstract] [Full Text] [Related]

  • 10. Synapse elimination, the size principle, and Hebbian synapses.
    Stollberg J.
    J Neurobiol; 1995 Feb 06; 26(2):273-82. PubMed ID: 7707047
    [Abstract] [Full Text] [Related]

  • 11. Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition.
    Buffelli M, Burgess RW, Feng G, Lobe CG, Lichtman JW, Sanes JR.
    Nature; 2003 Jul 24; 424(6947):430-4. PubMed ID: 12879071
    [Abstract] [Full Text] [Related]

  • 12. Is reelin the answer to synapse elimination at the neuromuscular junction?
    Chih B, Scheiffele P.
    Sci STKE; 2003 Oct 21; 2003(205):pe45. PubMed ID: 14570978
    [Abstract] [Full Text] [Related]

  • 13. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses.
    Kakegawa W, Tsuzuki K, Yoshida Y, Kameyama K, Ozawa S.
    Eur J Neurosci; 2004 Jul 21; 20(1):101-10. PubMed ID: 15245483
    [Abstract] [Full Text] [Related]

  • 14. [Synaptic plasticity in learning and memory].
    Skrebitskiĭ VG, Chepkova AN.
    Usp Fiziol Nauk; 1999 Jul 21; 30(4):3-13. PubMed ID: 10612184
    [Abstract] [Full Text] [Related]

  • 15. Postsynaptic signaling and plasticity mechanisms.
    Sheng M, Kim MJ.
    Science; 2002 Oct 25; 298(5594):776-80. PubMed ID: 12399578
    [Abstract] [Full Text] [Related]

  • 16. Pre- and postsynaptic mechanisms in Hebbian activity-dependent synapse modification.
    Li MX, Jia M, Yang LX, Dunlap V, Nelson PG.
    J Neurobiol; 2002 Sep 05; 52(3):241-50. PubMed ID: 12210107
    [Abstract] [Full Text] [Related]

  • 17. Interactions between nerve and muscle: synapse elimination at the developing neuromuscular junction.
    Colman H, Lichtman JW.
    Dev Biol; 1993 Mar 05; 156(1):1-10. PubMed ID: 8449362
    [Abstract] [Full Text] [Related]

  • 18. Activity-dependent plasticity of developing climbing fiber-Purkinje cell synapses.
    Bosman LW, Konnerth A.
    Neuroscience; 2009 Sep 01; 162(3):612-23. PubMed ID: 19302832
    [Abstract] [Full Text] [Related]

  • 19. The thrombin receptor mediates functional activity-dependent neuromuscular synapse reduction via protein kinase C activation in vitro.
    Jia M, Li M, Dunlap V, Nelson PG.
    J Neurobiol; 1999 Feb 15; 38(3):369-81. PubMed ID: 10022579
    [Abstract] [Full Text] [Related]

  • 20. Proteolytic action of thrombin is required for electrical activity-dependent synapse reduction.
    Liu Y, Fields RD, Festoff BW, Nelson PG.
    Proc Natl Acad Sci U S A; 1994 Oct 25; 91(22):10300-4. PubMed ID: 7524091
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.