These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Kinetic analysis of antigen-specific immune responses in resistant and susceptible mice during infection with Trypanosoma cruzi. Hoft DF, Lynch RG, Kirchhoff LV. J Immunol; 1993 Dec 15; 151(12):7038-47. PubMed ID: 8258708 [Abstract] [Full Text] [Related]
23. Recombinant SSP4 protein from Trypanosoma cruzi amastigotes regulates nitric oxide production by macrophages. Ramos-Ligonio A, López-Monteon A, Talamás-Rohana P, Rosales-Encina JL. Parasite Immunol; 2004 Oct 15; 26(10):409-18. PubMed ID: 15752118 [Abstract] [Full Text] [Related]
24. Trypanosoma cruzi: the effect of nitric oxide synthesis inhibition on the CD4 T cell response to the trans-sialidase superfamily. Millar AE, Kahn SJ. Exp Parasitol; 2000 Feb 15; 94(2):84-91. PubMed ID: 10673344 [Abstract] [Full Text] [Related]
25. Antigen presentation to Th1 but not Th2 cells by macrophages results in nitric oxide production and inhibition of T cell proliferation: interferon-gamma is essential but insufficient. van der Veen RC, Dietlin TA, Pen L, Gray JD, Hofman FM. Cell Immunol; 2000 Dec 15; 206(2):125-35. PubMed ID: 11161444 [Abstract] [Full Text] [Related]
26. Effect of mast cell granules on the gene expression of nitric oxide synthase and tumour necrosis factor-alpha in macrophages. Li Y, Nguyen TD, Stechschulte AC, Stechschulte DJ, Dileepan KN. Mediators Inflamm; 1998 Dec 15; 7(5):355-61. PubMed ID: 9883971 [Abstract] [Full Text] [Related]
27. IFN-gamma, but not nitric oxide or specific IgG, is essential for the in vivo control of low-virulence Sylvio X10/4 Trypanosoma cruzi parasites. Marinho CR, Nuñez-Apaza LN, Martins-Santos R, Bastos KR, Bombeiro AL, Bucci DZ, Sardinha LR, Lima MR, Alvarez JM. Scand J Immunol; 2007 Dec 15; 66(2-3):297-308. PubMed ID: 17635807 [Abstract] [Full Text] [Related]
28. Docosahexaenoic acid, a component of fish oil, inhibits nitric oxide production in vitro. Jeyarajah DR, Kielar M, Penfield J, Lu CY. J Surg Res; 1999 May 15; 83(2):147-50. PubMed ID: 10329109 [Abstract] [Full Text] [Related]
29. Prior and concomitant dehydroepiandrosterone treatment affects immunologic response of cultured macrophages infected with Trypanosoma cruzi in vitro? Kuehn CC, Oliveira LG, Santos CD, Augusto MB, Toldo MP, do Prado JC. Vet Parasitol; 2011 May 11; 177(3-4):242-6. PubMed ID: 21255931 [Abstract] [Full Text] [Related]
30. Leukotriene B(4) induces nitric oxide synthesis in Trypanosoma cruzi-infected murine macrophages and mediates resistance to infection. Talvani A, Machado FS, Santana GC, Klein A, Barcelos L, Silva JS, Teixeira MM. Infect Immun; 2002 Aug 11; 70(8):4247-53. PubMed ID: 12117933 [Abstract] [Full Text] [Related]
31. Unraveling the lethal synergism between Trypanosoma cruzi infection and LPS: a role for increased macrophage reactivity. Paiva CN, Arras RH, Lessa LP, Gibaldi D, Alves L, Metz CN, Gazzinelli R, Pyrrho AS, Lannes-Vieira J, Bozza MT. Eur J Immunol; 2007 May 11; 37(5):1355-64. PubMed ID: 17390393 [Abstract] [Full Text] [Related]
32. Glycosylphosphatidylinositol-anchored mucin-like glycoproteins isolated from Trypanosoma cruzi trypomastigotes induce in vivo leukocyte recruitment dependent on MCP-1 production by IFN-gamma-primed-macrophages. Coelho PS, Klein A, Talvani A, Coutinho SF, Takeuchi O, Akira S, Silva JS, Canizzaro H, Gazzinelli RT, Teixeira MM. J Leukoc Biol; 2002 May 11; 71(5):837-44. PubMed ID: 11994509 [Abstract] [Full Text] [Related]