These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


290 related items for PubMed ID: 8203617

  • 21. N- and L-type calcium channel antagonist improves glomerular dynamics, reverses severe nephrosclerosis, and inhibits apoptosis and proliferation in an l-NAME/SHR model.
    Zhou X, Ono H, Ono Y, Frohlich ED.
    J Hypertens; 2002 May; 20(5):993-1000. PubMed ID: 12011661
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Effects of angiotensin-converting enzyme inhibition on altered renal hemodynamics induced by low protein diet in the rat.
    Fernández-Repollet E, Tapia E, Martínez-Maldonado M.
    J Clin Invest; 1987 Oct; 80(4):1045-9. PubMed ID: 3308957
    [Abstract] [Full Text] [Related]

  • 24. Renal and nephron hemodynamics in spontaneously hypertensive rats.
    Arendshorst WJ, Beierwaltes WH.
    Am J Physiol; 1979 Mar; 236(3):F246-51. PubMed ID: 426066
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Hemodynamic comparison of diltiazem and TA-3090 in spontaneously hypertensive and normal Wistar-Kyoto rats.
    Isshiki T, Pegram BL, Frohlich ED.
    Am J Cardiol; 1988 Oct 05; 62(11):79G-84G. PubMed ID: 3177230
    [Abstract] [Full Text] [Related]

  • 27. Relative roles of nitric oxide, prostanoids and angiotensin II in the regulation of canine glomerular hemodynamics. A micropuncture study.
    Kramer HJ, Horacek V, Bäcker A, Vaneckova I, Heller J.
    Kidney Blood Press Res; 2004 Oct 05; 27(1):10-7. PubMed ID: 14583658
    [Abstract] [Full Text] [Related]

  • 28. Physiopathological implications of P2X1 and P2X7 receptors in regulation of glomerular hemodynamics in angiotensin II-induced hypertension.
    Franco M, Bautista-Pérez R, Cano-Martínez A, Pacheco U, Santamaría J, Del Valle Mondragón L, Pérez-Méndez O, Navar LG.
    Am J Physiol Renal Physiol; 2017 Jul 01; 313(1):F9-F19. PubMed ID: 28404593
    [Abstract] [Full Text] [Related]

  • 29. Effects of an angiotensin-converting enzyme inhibitor, a calcium antagonist, and an endothelin receptor antagonist on renal afferent arteriolar structure.
    Skov K, Fenger-Grøn J, Mulvany MJ.
    Hypertension; 1996 Sep 01; 28(3):464-71. PubMed ID: 8794834
    [Abstract] [Full Text] [Related]

  • 30. Abnormalities in glomerular function in rats developing spontaneous hypertension.
    Dilley JR, Stier CT, Arendshorst WJ.
    Am J Physiol; 1984 Jan 01; 246(1 Pt 2):F12-20. PubMed ID: 6696074
    [Abstract] [Full Text] [Related]

  • 31. Cisplatin-induced nephrotoxicity causes altered renal hemodynamics in Wistar Kyoto and spontaneously hypertensive rats: role of augmented renal alpha-adrenergic responsiveness.
    Hye Khan MA, Abdul Sattar M, Abdullah NA, Johns EJ.
    Exp Toxicol Pathol; 2007 Nov 01; 59(3-4):253-60. PubMed ID: 17764917
    [Abstract] [Full Text] [Related]

  • 32. Acute and long-term effects of angiotensin converting enzyme inhibition on larger arteries and cardiac hypertrophy: mechanical and structural parameters.
    Benetos A, Albaladejo P, Levy BI, Safar ME.
    J Hypertens Suppl; 1994 Jul 01; 12(4):S21-9. PubMed ID: 7965270
    [Abstract] [Full Text] [Related]

  • 33. Angiotensin-converting enzyme inhibition in adult hypertensive rats: a stereological study of renal filtration surface area.
    Dunstan HJ, Briscoe TA, Bertram JF, Johnston CI, Black MJ.
    Clin Exp Pharmacol Physiol; 2003 Jul 01; 30(1-2):72-6. PubMed ID: 12542457
    [Abstract] [Full Text] [Related]

  • 34. Role of kinins and angiotensin II in the vasodilating action of angiotensin converting enzyme inhibition in rat renal vessels.
    Endlich K, Steinhausen M.
    J Hypertens; 1997 Jun 01; 15(6):633-41. PubMed ID: 9218183
    [Abstract] [Full Text] [Related]

  • 35. Effect of angiotensin-converting enzyme two-week inhibition on renal angiotensin II receptors and renal vascular reactivity in SHR.
    Haddad G, Garcia R.
    J Mol Cell Cardiol; 1997 Feb 01; 29(2):813-22. PubMed ID: 9140837
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Glomerular hemodynamics of the clipped kidney: effects of captopril and diltiazem.
    Frei U, Schindler R, Matthies C, Koch KM.
    J Pharmacol Exp Ther; 1992 Dec 01; 263(3):938-42. PubMed ID: 1469650
    [Abstract] [Full Text] [Related]

  • 39. Spontaneously hypertensive rats demonstrate increased renal vascular alpha 1-adrenergic receptor responsiveness.
    Uchino K, Frohlich ED, Nishikimi T, Isshiki T, Kardon MB.
    Am J Physiol; 1991 May 01; 260(5 Pt 2):R889-93. PubMed ID: 1852127
    [Abstract] [Full Text] [Related]

  • 40. The persistent effect of long-term enalapril on pressure natriuresis in spontaneously hypertensive rats.
    Dukacz SA, Adams MA, Kline RL.
    Am J Physiol; 1997 Jul 01; 273(1 Pt 2):F104-12. PubMed ID: 9249597
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.