These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


587 related items for PubMed ID: 8207208

  • 1. Nitric oxide production by splenic macrophages is not responsible for T cell suppression during acute infection with lactate dehydrogenase-elevating virus.
    Rowland RR, Butz EA, Plagemann PG.
    J Immunol; 1994 Jun 15; 152(12):5785-95. PubMed ID: 8207208
    [Abstract] [Full Text] [Related]

  • 2. Cytokine and nitric oxide regulation of the immunosuppression in Trypanosoma cruzi infection.
    Abrahamsohn IA, Coffman RL.
    J Immunol; 1995 Oct 15; 155(8):3955-63. PubMed ID: 7561103
    [Abstract] [Full Text] [Related]

  • 3. Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation. Role of IFN-gamma in the induction of the nitric oxide-synthesizing pathway.
    Albina JE, Abate JA, Henry WL.
    J Immunol; 1991 Jul 01; 147(1):144-8. PubMed ID: 1904899
    [Abstract] [Full Text] [Related]

  • 4. Macrophages in mice acutely infected with lymphocytic choriomeningitis virus are primed for nitric oxide synthesis.
    Butz EA, Hostager BS, Southern PJ.
    Microb Pathog; 1994 Apr 01; 16(4):283-95. PubMed ID: 7968457
    [Abstract] [Full Text] [Related]

  • 5. Natural suppressor (NS) activity from murine neonatal spleen is responsive to IFN-gamma.
    Maier T, Holda JH.
    J Immunol; 1987 Jun 15; 138(12):4075-84. PubMed ID: 2953798
    [Abstract] [Full Text] [Related]

  • 6. Reovirus infection in chickens primes splenic adherent macrophages to produce nitric oxide in response to T cell-produced factors.
    Pertile TL, Sharma JM, Walser MM.
    Cell Immunol; 1995 Sep 15; 164(2):207-16. PubMed ID: 7656329
    [Abstract] [Full Text] [Related]

  • 7. Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins.
    Schleifer KW, Mansfield JM.
    J Immunol; 1993 Nov 15; 151(10):5492-503. PubMed ID: 8228241
    [Abstract] [Full Text] [Related]

  • 8. Antigen presentation to Th1 but not Th2 cells by macrophages results in nitric oxide production and inhibition of T cell proliferation: interferon-gamma is essential but insufficient.
    van der Veen RC, Dietlin TA, Pen L, Gray JD, Hofman FM.
    Cell Immunol; 2000 Dec 15; 206(2):125-35. PubMed ID: 11161444
    [Abstract] [Full Text] [Related]

  • 9. Nitric oxide production from a macrophage cell line: interaction with autologous and allogeneic lymphocytes.
    Isobe K, Nakashima I.
    J Cell Biochem; 1993 Nov 15; 53(3):198-205. PubMed ID: 8263036
    [Abstract] [Full Text] [Related]

  • 10. Burn-induced immunosuppression: attenuated T cell signaling independent of IFN-gamma- and nitric oxide-mediated pathways.
    Duan X, Yarmush D, Leeder A, Yarmush ML, Mitchell RN.
    J Leukoc Biol; 2008 Feb 15; 83(2):305-13. PubMed ID: 18024716
    [Abstract] [Full Text] [Related]

  • 11. Nitric oxide mediates suppression of T cell responses in murine Trypanosoma brucei infection.
    Sternberg J, McGuigan F.
    Eur J Immunol; 1992 Oct 15; 22(10):2741-4. PubMed ID: 1396977
    [Abstract] [Full Text] [Related]

  • 12. Experimental murine Trypanosoma congolense infections. I. Administration of anti-IFN-gamma antibodies alters trypanosome-susceptible mice to a resistant-like phenotype.
    Uzonna JE, Kaushik RS, Gordon JR, Tabel H.
    J Immunol; 1998 Nov 15; 161(10):5507-15. PubMed ID: 9820527
    [Abstract] [Full Text] [Related]

  • 13. Macrophage-mediated suppression of con A-induced IL-2 production in spleen cells from syphilitic rabbits.
    Tomai MA, Elmquist BJ, Warmka SM, Fitzgerald TJ.
    J Immunol; 1989 Jul 01; 143(1):309-14. PubMed ID: 2786531
    [Abstract] [Full Text] [Related]

  • 14. Infection of BALB/cByJ mice with the JHM strain of mouse hepatitis virus alters in vitro splenic T cell proliferation and cytokine production.
    de Souza MS, Smith AL, Bottomly K.
    Lab Anim Sci; 1991 Apr 01; 41(2):99-105. PubMed ID: 1658457
    [Abstract] [Full Text] [Related]

  • 15. Transplacental lactate dehydrogenase-elevating virus (LDV) transmission: immune inhibition of umbilical cord infection, and correlation of fetal virus susceptibility with development of F4/80 antigen expression.
    Zitterkopf NL, Haven TR, Huela M, Bradley DS, Cafruny WA.
    Placenta; 2002 May 01; 23(5):438-46. PubMed ID: 12061860
    [Abstract] [Full Text] [Related]

  • 16. Suppression of nitric oxide generated by inflammatory macrophages by calcitonin gene-related peptide in aqueous humor.
    Taylor AW, Yee DG, Streilein JW.
    Invest Ophthalmol Vis Sci; 1998 Jul 01; 39(8):1372-8. PubMed ID: 9660485
    [Abstract] [Full Text] [Related]

  • 17. Immunological basis for susceptibility and resistance to pulmonary blastomycosis in mouse strains.
    Brummer E, Kethineni N, Stevens DA.
    Cytokine; 2005 Oct 07; 32(1):12-9. PubMed ID: 16183299
    [Abstract] [Full Text] [Related]

  • 18. Targeting of immunostimulatory DNA cures experimental visceral leishmaniasis through nitric oxide up-regulation and T cell activation.
    Datta N, Mukherjee S, Das L, Das PK.
    Eur J Immunol; 2003 Jun 07; 33(6):1508-18. PubMed ID: 12778468
    [Abstract] [Full Text] [Related]

  • 19. Neonatal infection of mice with lactate dehydrogenase-elevating virus results in suppression of humoral antiviral immune response but does not alter the course of viraemia or the polyclonal activation of B cells and immune complex formation.
    Rowland RR, Even C, Anderson GW, Chen Z, Hu B, Plagemann PG.
    J Gen Virol; 1994 May 07; 75 ( Pt 5)():1071-81. PubMed ID: 8176369
    [Abstract] [Full Text] [Related]

  • 20. [TH1 response in the experimental infection with Trypanosoma cruzi].
    Cardoni RL, Antúnez MI, Abrami AA.
    Medicina (B Aires); 1999 May 07; 59 Suppl 2():84-90. PubMed ID: 10668248
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 30.