These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Detection and characterization of intracranial aneurysms with MR angiography: comparison of volume-rendering and maximum-intensity-projection algorithms. Mallouhi A, Felber S, Chemelli A, Dessl A, Auer A, Schocke M, Jaschke WR, Waldenberger P. AJR Am J Roentgenol; 2003 Jan; 180(1):55-64. PubMed ID: 12490476 [Abstract] [Full Text] [Related]
3. Intracranial aneurysms: detection and characterization with MR angiography with use of an advanced postprocessing technique in a blinded-reader study. Atlas SW, Sheppard L, Goldberg HI, Hurst RW, Listerud J, Flamm E. Radiology; 1997 Jun; 203(3):807-14. PubMed ID: 9169709 [Abstract] [Full Text] [Related]
4. Sequential three-dimensional time-of-flight MR angiography of the carotid arteries: value of variable excitation and postprocessing in reducing venetian blind artifact. Ding X, Tkach JA, Ruggieri PR, Masaryk TJ. AJR Am J Roentgenol; 1994 Sep; 163(3):683-8. PubMed ID: 8079868 [Abstract] [Full Text] [Related]
5. Contrast-enhanced MR angiography for the diagnosis of intracranial vascular disease: optimal dose of gadopentetate dimeglumine. Jung HW, Chang KH, Choi DS, Han MH, Han MC. AJR Am J Roentgenol; 1995 Nov; 165(5):1251-5. PubMed ID: 7572513 [Abstract] [Full Text] [Related]
6. [Characterization of the volume data of three-dimensional CT and MR angiograms for the delineation of cerebral aneurysms]. Satoh T. No Shinkei Geka; 2002 May; 30(5):487-93. PubMed ID: 11993171 [Abstract] [Full Text] [Related]
10. 3D TOF MRA of intracranial aneurysms at 1.5 T and 3 T: influence of matrix, parallel imaging, and acquisition time on image quality - a vascular phantom study. Hiai Y, Kakeda S, Sato T, Ohnari N, Moriya J, Kitajima M, Hirai T, Yamashita Y, Korogi Y. Acad Radiol; 2008 May; 15(5):635-40. PubMed ID: 18423321 [Abstract] [Full Text] [Related]
11. Contrast-enhanced three-dimensional MR angiography with an elliptical centric view for the evaluation of intracranial aneurysms. Isoda H, Inagawa S, Ito T, Takeda H, Takehara Y, Nozaki A, Sakahara H. Eur Radiol; 2007 May; 17(5):1221-5. PubMed ID: 17047962 [Abstract] [Full Text] [Related]
13. Intracranial aneurysms and vascular malformations: comparison of time-of-flight and phase-contrast MR angiography. Huston J, Rufenacht DA, Ehman RL, Wiebers DO. Radiology; 1991 Dec; 181(3):721-30. PubMed ID: 1947088 [Abstract] [Full Text] [Related]
14. MR evaluation of large intracranial aneurysms using cine low flip angle gradient-refocused imaging. Tsuruda JS, Halbach VV, Higashida RT, Mark AS, Hieshima GB, Norman D. AJR Am J Roentgenol; 1988 Jul; 151(1):153-62. PubMed ID: 3259800 [Abstract] [Full Text] [Related]
15. A diagnostic pitfall for intracranial aneurysms in time-of-flight MR angiography: small intracranial lipomas. Kemmling A, Noelte I, Gerigk L, Singer S, Groden C, Scharf J. AJR Am J Roentgenol; 2008 Jan; 190(1):W62-7. PubMed ID: 18094274 [Abstract] [Full Text] [Related]
17. Three-dimensional volume rendering for magnetic resonance angiography in the screening and preoperative workup of intracranial aneurysms. Maeder PP, Meuli RA, de Tribolet N. J Neurosurg; 1996 Dec; 85(6):1050-5. PubMed ID: 8929494 [Abstract] [Full Text] [Related]