These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


148 related items for PubMed ID: 8212892

  • 1. The multifunctional regulatory proteins ABF1 and CPF1 are involved in the formation of a nuclease-hypersensitive region in the promoter of the QCR8 gene.
    De Winde JH, Van Leeuwen HC, Grivell LA.
    Yeast; 1993 Aug; 9(8):847-57. PubMed ID: 8212892
    [Abstract] [Full Text] [Related]

  • 2. Global regulation of mitochondrial biogenesis in Saccharomyces cerevisiae: ABF1 and CPF1 play opposite roles in regulating expression of the QCR8 gene, which encodes subunit VIII of the mitochondrial ubiquinol-cytochrome c oxidoreductase.
    de Winde JH, Grivell LA.
    Mol Cell Biol; 1992 Jun; 12(6):2872-83. PubMed ID: 1317009
    [Abstract] [Full Text] [Related]

  • 3. Regulation of mitochondrial biogenesis in Saccharomyces cerevisiae. Intricate interplay between general and specific transcription factors in the promoter of the QCR8 gene.
    De Winde JH, Grivell LA.
    Eur J Biochem; 1995 Oct 01; 233(1):200-8. PubMed ID: 7588747
    [Abstract] [Full Text] [Related]

  • 4. Chromatin structure of the yeast FBP1 gene: transcription-dependent changes in the regulatory and coding regions.
    del Olmo ML, Sogo JM, Franco L, Pérez-Ortín JE.
    Yeast; 1993 Nov 01; 9(11):1229-40. PubMed ID: 8109172
    [Abstract] [Full Text] [Related]

  • 5. [Structural and functional chromatin organization of the SUP35 gene in Saccharomyces cerevisiae yeast].
    Riabinkova NA, Vodop'ianova LG, Samsonova MG, Miasikova EM, Osipova TN.
    Genetika; 1997 Apr 01; 33(4):451-7. PubMed ID: 9206662
    [Abstract] [Full Text] [Related]

  • 6. Structure and expression of the ABF1-regulated ribosomal protein S33 gene in Kluyveromyces.
    Hoekstra R, Ferreira PM, Bootsman TC, Mager WH, Planta RJ.
    Yeast; 1992 Nov 01; 8(11):949-59. PubMed ID: 1481571
    [Abstract] [Full Text] [Related]

  • 7. Structural and functional requirements for the chromatin transition at the PHO5 promoter in Saccharomyces cerevisiae upon PHO5 activation.
    Fascher KD, Schmitz J, Hörz W.
    J Mol Biol; 1993 Jun 05; 231(3):658-67. PubMed ID: 8515443
    [Abstract] [Full Text] [Related]

  • 8. Common chromatin architecture, common chromatin remodeling, and common transcription kinetics of Adr1-dependent genes in Saccharomyces cerevisiae.
    Agricola E, Verdone L, Xella B, Di Mauro E, Caserta M.
    Biochemistry; 2004 Jul 13; 43(27):8878-84. PubMed ID: 15236596
    [Abstract] [Full Text] [Related]

  • 9. GCN5, a yeast transcriptional coactivator, induces chromatin reconfiguration of HIS3 promoter in vivo.
    Filetici P, Aranda C, Gonzàlez A, Ballario P.
    Biochem Biophys Res Commun; 1998 Jan 06; 242(1):84-7. PubMed ID: 9439614
    [Abstract] [Full Text] [Related]

  • 10. Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context.
    Tanaka S, Livingstone-Zatchej M, Thoma F.
    J Mol Biol; 1996 Apr 19; 257(5):919-34. PubMed ID: 8632475
    [Abstract] [Full Text] [Related]

  • 11. ATF/CREB sites present in sub-telomeric regions of Saccharomyces cerevisiae chromosomes are part of promoters and act as UAS/URS of highly conserved COS genes.
    Spode I, Maiwald D, Hollenberg CP, Suckow M.
    J Mol Biol; 2002 May 31; 319(2):407-20. PubMed ID: 12051917
    [Abstract] [Full Text] [Related]

  • 12. The UGA3-GLT1 intergenic region constitutes a promoter whose bidirectional nature is determined by chromatin organization in Saccharomyces cerevisiae.
    Ishida C, Aranda C, Valenzuela L, Riego L, Deluna A, Recillas-Targa F, Filetici P, López-Revilla R, González A.
    Mol Microbiol; 2006 Mar 31; 59(6):1790-806. PubMed ID: 16553884
    [Abstract] [Full Text] [Related]

  • 13. Different roles for abf1p and a T-rich promoter element in nucleosome organization of the yeast RPS28A gene.
    Lascaris RF, Groot E, Hoen PB, Mager WH, Planta RJ.
    Nucleic Acids Res; 2000 Mar 15; 28(6):1390-6. PubMed ID: 10684934
    [Abstract] [Full Text] [Related]

  • 14. Remodeling of yeast CUP1 chromatin involves activator-dependent repositioning of nucleosomes over the entire gene and flanking sequences.
    Shen CH, Leblanc BP, Alfieri JA, Clark DJ.
    Mol Cell Biol; 2001 Jan 15; 21(2):534-47. PubMed ID: 11134341
    [Abstract] [Full Text] [Related]

  • 15. In vitro selection of DNA binding sites for ABF1 protein from Saccharomyces cerevisiae.
    Beinoraviciūte-Kellner R, Lipps G, Krauss G.
    FEBS Lett; 2005 Aug 15; 579(20):4535-40. PubMed ID: 16083878
    [Abstract] [Full Text] [Related]

  • 16. Isolation and characterisation of the linked genes, FPS1 and QCR8, coding for farnesyl-diphosphate synthase and the 11 kDa subunit VIII of the mitochondrial bc1-complex in the yeast Kluyveromyces lactis.
    Mulder W, Scholten IH, Nagelkerken B, Grivell LA.
    Biochim Biophys Acta; 1994 Nov 22; 1219(3):713-8. PubMed ID: 7948032
    [Abstract] [Full Text] [Related]

  • 17. Multiple transcriptional activation complexes tether the yeast activator Met4 to DNA.
    Blaiseau PL, Thomas D.
    EMBO J; 1998 Nov 02; 17(21):6327-36. PubMed ID: 9799240
    [Abstract] [Full Text] [Related]

  • 18. Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene.
    Wellinger RE, Thoma F.
    EMBO J; 1997 Aug 15; 16(16):5046-56. PubMed ID: 9305646
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.