These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


80 related items for PubMed ID: 821539

  • 1. Lipid-protein relationships in erythrocyte membranes revealed by paramagnetic quenching of protein fluorescence.
    Bieri VG, Wallach DF.
    Biochim Biophys Acta; 1976 Aug 16; 443(2):198-205. PubMed ID: 821539
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Dynamic fluorescence quenching studies on lipid mobilities in phosphatidylcholine-cholesterol membranes.
    Merkle H, Subczynski WK, Kusumi A.
    Biochim Biophys Acta; 1987 Feb 26; 897(2):238-48. PubMed ID: 3028480
    [Abstract] [Full Text] [Related]

  • 6. Lipid-protein interactions at the erythrocyte membrane. Different influence of glucose and sorbose on membrane lipid transition.
    Zimmer G, Schirmer H, Bastian P.
    Biochim Biophys Acta; 1975 Aug 20; 401(2):244-55. PubMed ID: 1156593
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. The structure and thermotropism of thymocyte plasma membranes as revealed by laser-raman spectroscopy.
    Verma SP, Wallach DF, Schmidt-Ullrich R.
    Biochim Biophys Acta; 1975 Jul 18; 394(4):633-45. PubMed ID: 1148234
    [Abstract] [Full Text] [Related]

  • 10. Degree of exposure of membrane proteins determined by fluorescence quenching.
    Shinitzky M, Rivnay B.
    Biochemistry; 1977 Mar 08; 16(5):982-6. PubMed ID: 843525
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Detecting ordered domain formation (lipid rafts) in model membranes using Tempo.
    Bakht O, London E.
    Methods Mol Biol; 2007 Mar 08; 398():29-40. PubMed ID: 18214372
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Focal erythrocyte membrane perturbations caused by nitroxide lipid analogues.
    Bieri VG, Wallach DF, Lin PS.
    Proc Natl Acad Sci U S A; 1974 Dec 08; 71(12):4797-801. PubMed ID: 4373731
    [Abstract] [Full Text] [Related]

  • 18. Effects of digitonin and glutaraldehyde on the preservation of erythrocyte membrane structures.
    Meyer HW.
    Acta Histochem Suppl; 1981 Dec 08; 23():195-204. PubMed ID: 6784165
    [Abstract] [Full Text] [Related]

  • 19. Role of membrane thermotropic properties on hypotonic hemolysis and hypertonic cryohemolysis of human red blood cells.
    Minetti M, Ceccarini M, Di Stasi AM.
    J Cell Biochem; 1984 Dec 08; 25(2):61-72. PubMed ID: 6090481
    [Abstract] [Full Text] [Related]

  • 20. Low levels of the pesticide, delta-hexachlorocyclohexane, lyses human erythrocytes and alters the organization of membrane lipids and proteins as revealed by Raman spectroscopy.
    Verma SP, Singhal A.
    Biochim Biophys Acta; 1991 Nov 18; 1070(1):265-73. PubMed ID: 1721541
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.