These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
111 related items for PubMed ID: 8218896
1. Bending stiffness of lipid bilayers: IV. Interpretation of red cell shape change. Fischer TM. Biophys J; 1993 Aug; 65(2):687-92. PubMed ID: 8218896 [Abstract] [Full Text] [Related]
3. Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer- couple hypothesis from membrane mechanics. Lim H W G, Wortis M, Mukhopadhyay R. Proc Natl Acad Sci U S A; 2002 Dec 24; 99(26):16766-9. PubMed ID: 12471152 [Abstract] [Full Text] [Related]
5. Elastic energy of the discocyte-stomatocyte transformation. Muñoz S, Sebastián JL, Sancho M, Alvarez G. Biochim Biophys Acta; 2014 Mar 24; 1838(3):950-6. PubMed ID: 24192054 [Abstract] [Full Text] [Related]
6. Bending elasticity and bending fluctuations of lipid bilayer containing an additive. Bivas I, Méléard P. Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan 24; 67(1 Pt 1):012901. PubMed ID: 12636543 [Abstract] [Full Text] [Related]
7. Elastic curvature constants of lipid monolayers and bilayers. Marsh D. Chem Phys Lipids; 2006 Jan 24; 144(2):146-59. PubMed ID: 17045578 [Abstract] [Full Text] [Related]
9. The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells. Svetina S, Kuzman D, Waugh RE, Ziherl P, Zeks B. Bioelectrochemistry; 2004 May 24; 62(2):107-13. PubMed ID: 15039011 [Abstract] [Full Text] [Related]
11. Bilayer balance and regulation of red cell shape changes. Mohandas N, Greenquist AC, Shohet SB. J Supramol Struct; 1978 May 24; 9(3):453-8. PubMed ID: 748684 [Abstract] [Full Text] [Related]
13. Switching mechanics with chemistry: a model for the bending stiffness of amphiphilic bilayers with interacting headgroups in crystalline order. Hartmann MA, Weinkamer R, Zemb T, Fischer FD, Fratzl P. Phys Rev Lett; 2006 Jul 07; 97(1):018106. PubMed ID: 16907415 [Abstract] [Full Text] [Related]
14. Resting shape and spontaneous membrane curvature of red blood cells. Pozrikidis C. Math Med Biol; 2005 Mar 07; 22(1):34-52. PubMed ID: 15716299 [Abstract] [Full Text] [Related]
15. Is the surface area of the red cell membrane skeleton locally conserved? Fischer TM. Biophys J; 1992 Feb 07; 61(2):298-305. PubMed ID: 1547320 [Abstract] [Full Text] [Related]
16. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Gruner SM. Proc Natl Acad Sci U S A; 1985 Jun 07; 82(11):3665-9. PubMed ID: 3858841 [Abstract] [Full Text] [Related]
17. Interaction between bending and tension forces in bilayer membranes. Secomb TW. Biophys J; 1988 Oct 07; 54(4):743-6. PubMed ID: 3224154 [Abstract] [Full Text] [Related]
18. Shape behavior of lipid vesicles as the basis of some cellular processes. Svetina S, Zeks B. Anat Rec; 2002 Nov 01; 268(3):215-25. PubMed ID: 12382320 [Abstract] [Full Text] [Related]
19. Phospholipid membrane bending as assessed by the shape sequence of giant oblate phospholipid vesicles. Majhenc J, Bozic B, Svetina S, Zeks B. Biochim Biophys Acta; 2004 Aug 30; 1664(2):257-66. PubMed ID: 15328058 [Abstract] [Full Text] [Related]
20. Membrane skeleton and red blood cell vesiculation at low pH. Bobrowska-Hägerstrand M, Hägerstrand H, Iglic A. Biochim Biophys Acta; 1998 Apr 22; 1371(1):123-8. PubMed ID: 9565664 [Abstract] [Full Text] [Related] Page: [Next] [New Search]