These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
157 related items for PubMed ID: 8224015
1. Mechanisms of acetylcholine-induced relaxation in dog external and internal ophthalmic arteries. Wang Y, Okamura T, Toda N. Exp Eye Res; 1993 Sep; 57(3):275-81. PubMed ID: 8224015 [Abstract] [Full Text] [Related]
2. Mechanisms of histamine-induced relaxation in external and internal ophthalmic arteries. Wang Y, Okamura T, Toda N. Invest Ophthalmol Vis Sci; 1993 Jan; 34(1):41-8. PubMed ID: 8425838 [Abstract] [Full Text] [Related]
3. Functional role of nerve-derived nitric oxide in isolated dog ophthalmic arteries. Toda N, Kitamura Y, Okamura T. Invest Ophthalmol Vis Sci; 1995 Mar; 36(3):563-70. PubMed ID: 7890487 [Abstract] [Full Text] [Related]
4. Neurogenic and non-neurogenic relaxations caused by nicotine in isolated dog superficial temporal artery. Okamura T, Enokibori M, Toda N. J Pharmacol Exp Ther; 1993 Sep; 266(3):1416-21. PubMed ID: 8396635 [Abstract] [Full Text] [Related]
6. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine. Tanaka Y, Otsuka A, Tanaka H, Shigenobu K. Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734 [Abstract] [Full Text] [Related]
7. Mechanisms underlying endothelium-independent relaxation by acetylcholine in canine retinal and cerebral arteries. Toda N, Zhang JX, Ayajiki K, Okamura T. J Pharmacol Exp Ther; 1995 Sep; 274(3):1507-12. PubMed ID: 7562527 [Abstract] [Full Text] [Related]
10. Role of nitric oxide in neurally induced cerebroarterial relaxation. Toda N, Okamura T. J Pharmacol Exp Ther; 1991 Sep; 258(3):1027-32. PubMed ID: 1653833 [Abstract] [Full Text] [Related]
14. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF. Zygmunt PM, Plane F, Paulsson M, Garland CJ, Högestätt ED. Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786 [Abstract] [Full Text] [Related]
15. Pharmacologic characteristics of non-prostanoid, non-nitric oxide mediated and endothelium-dependent relaxation of guinea-pig aorta in response to substance P. Tanaka Y, Kaneko H, Tanaka H, Shigenobu K. Res Commun Mol Pathol Pharmacol; 1999 Jan; 103(1):65-81. PubMed ID: 10440572 [Abstract] [Full Text] [Related]
16. Endothelium-dependent relaxation by substance P in human isolated omental arteries and veins: relative contribution of prostanoids, nitric oxide and hyperpolarization. Wallerstedt SM, Bodelsson M. Br J Pharmacol; 1997 Jan; 120(1):25-30. PubMed ID: 9117094 [Abstract] [Full Text] [Related]
17. Role of nitric oxide and carbon monoxide in N(omega)-Nitro-L-arginine methyl ester-resistant acetylcholine-induced relaxation in chicken carotid artery. Leo MD, Siddegowda YK, Kumar D, Tandan SK, Sastry KV, Prakash VR, Mishra SK. Eur J Pharmacol; 2008 Oct 31; 596(1-3):111-7. PubMed ID: 18713623 [Abstract] [Full Text] [Related]
18. Role of nitric oxide and Ca++-dependent K+ channels in mediating heterogeneous microvascular responses to acetylcholine in different vascular beds. Clark SG, Fuchs LC. J Pharmacol Exp Ther; 1997 Sep 31; 282(3):1473-9. PubMed ID: 9316861 [Abstract] [Full Text] [Related]
19. Neurogenic vasodilatation of canine isolated small labial arteries. Okamura T, Ayajiki K, Uchiyama M, Uehara M, Toda N. J Pharmacol Exp Ther; 1999 Mar 31; 288(3):1031-6. PubMed ID: 10027840 [Abstract] [Full Text] [Related]
20. Trimethaphan is a direct arterial vasodilator and an alpha-adrenoceptor antagonist. Harioka T, Hatano Y, Mori K, Toda N. Anesth Analg; 1984 Mar 31; 63(3):290-6. PubMed ID: 6142667 [Abstract] [Full Text] [Related] Page: [Next] [New Search]