These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


106 related items for PubMed ID: 8226475

  • 1. Relationship between arterial and portal vein immunoreactive glucagon during exercise.
    Wasserman DH, Lacy DB, Bracy DP.
    J Appl Physiol (1985); 1993 Aug; 75(2):724-9. PubMed ID: 8226475
    [Abstract] [Full Text] [Related]

  • 2. Splanchnic glucagon kinetics in exercising alloxan-diabetic dogs.
    Coker RH, Lacy DB, Krishna MG, Wasserman DH.
    J Appl Physiol (1985); 1999 May; 86(5):1626-31. PubMed ID: 10233127
    [Abstract] [Full Text] [Related]

  • 3. Pancreatic innervation is not essential for exercise-induced changes in glucagon and insulin or glucose kinetics.
    Coker RH, Koyama Y, Lacy DB, Williams PE, Rhèaume N, Wasserman DH.
    Am J Physiol; 1999 Dec; 277(6):E1122-9. PubMed ID: 10600803
    [Abstract] [Full Text] [Related]

  • 4. Interactions between glucagon and other counterregulatory hormones during normoglycemic and hypoglycemic exercise in dogs.
    Wasserman DH, Lickley HL, Vranic M.
    J Clin Invest; 1984 Oct; 74(4):1404-13. PubMed ID: 6148356
    [Abstract] [Full Text] [Related]

  • 5. Sympathetic drive to liver and nonhepatic splanchnic tissue during heavy exercise.
    Coker RH, Krishna MG, Lacy DB, Allen EJ, Wasserman DH.
    J Appl Physiol (1985); 1997 Apr; 82(4):1244-9. PubMed ID: 9104862
    [Abstract] [Full Text] [Related]

  • 6. Suppression of endogenous glucose production by mild hyperinsulinemia during exercise is determined predominantly by portal venous insulin.
    Camacho RC, Pencek RR, Lacy DB, James FD, Wasserman DH.
    Diabetes; 2004 Feb; 53(2):285-93. PubMed ID: 14747277
    [Abstract] [Full Text] [Related]

  • 7. Dynamics of hepatic lactate and glucose balances during prolonged exercise and recovery in the dog.
    Wasserman DH, Lacy DB, Green DR, Williams PE, Cherrington AD.
    J Appl Physiol (1985); 1987 Dec; 63(6):2411-7. PubMed ID: 3325489
    [Abstract] [Full Text] [Related]

  • 8. Hepatic nerves are not essential to the increase in hepatic glucose production during muscular work.
    Wasserman DH, Williams PE, Lacy DB, Bracy D, Cherrington AD.
    Am J Physiol; 1990 Aug; 259(2 Pt 1):E195-203. PubMed ID: 2200275
    [Abstract] [Full Text] [Related]

  • 9. Important role of glucagon during exercise in diabetic dogs.
    Wasserman DH, Lickley HL, Vranic M.
    J Appl Physiol (1985); 1985 Oct; 59(4):1272-81. PubMed ID: 2865245
    [Abstract] [Full Text] [Related]

  • 10. Exercise-induced fall in insulin: mechanism of action at the liver and effects on muscle glucose metabolism.
    Zinker BA, Mohr T, Kelly P, Namdaran K, Bracy DP, Wasserman DH.
    Am J Physiol; 1994 May; 266(5 Pt 1):E683-9. PubMed ID: 7911275
    [Abstract] [Full Text] [Related]

  • 11. Sympathetic drive to liver and nonhepatic splanchnic tissue during prolonged exercise is increased in diabetes.
    Coker RH, Krishna MG, Zinker BA, Allen EJ, Lacy DB, Wasserman DH.
    Metabolism; 1997 Nov; 46(11):1327-32. PubMed ID: 9361694
    [Abstract] [Full Text] [Related]

  • 12. Prior exercise increases net hepatic glucose uptake during a glucose load.
    Galassetti P, Coker RH, Lacy DB, Cherrington AD, Wasserman DH.
    Am J Physiol; 1999 Jun; 276(6):E1022-9. PubMed ID: 10362614
    [Abstract] [Full Text] [Related]

  • 13. Role of a negative arterial-portal venous glucose gradient in the postexercise state.
    Galassetti P, Koyama Y, Coker RH, Lacy DB, Cherrington AD, Wasserman DH.
    Am J Physiol; 1999 Dec; 277(6):E1038-45. PubMed ID: 10600793
    [Abstract] [Full Text] [Related]

  • 14. Magnitude of negative arterial-portal glucose gradient alters net hepatic glucose balance in conscious dogs.
    Pagliassotti MJ, Myers SR, Moore MC, Neal DW, Cherrington AD.
    Diabetes; 1991 Dec; 40(12):1659-68. PubMed ID: 1684554
    [Abstract] [Full Text] [Related]

  • 15. Exercise-induced rise in glucagon and ketogenesis during prolonged muscular work.
    Wasserman DH, Spalding JA, Bracy D, Lacy DB, Cherrington AD.
    Diabetes; 1989 Jun; 38(6):799-807. PubMed ID: 2566546
    [Abstract] [Full Text] [Related]

  • 16. Exercise-induced fall in insulin and hepatic carbohydrate metabolism during muscular work.
    Wasserman DH, Williams PE, Lacy DB, Goldstein RE, Cherrington AD.
    Am J Physiol; 1989 Apr; 256(4 Pt 1):E500-9. PubMed ID: 2650562
    [Abstract] [Full Text] [Related]

  • 17. Glucagon response to exercise is critical for accelerated hepatic glutamine metabolism and nitrogen disposal.
    Krishna MG, Coker RH, Lacy DB, Zinker BA, Halseth AE, Wasserman DH.
    Am J Physiol Endocrinol Metab; 2000 Sep; 279(3):E638-45. PubMed ID: 10950833
    [Abstract] [Full Text] [Related]

  • 18. Importance of intrahepatic mechanisms to gluconeogenesis from alanine during exercise and recovery.
    Wasserman DH, Williams PE, Lacy DB, Green DR, Cherrington AD.
    Am J Physiol; 1988 Apr; 254(4 Pt 1):E518-25. PubMed ID: 3281473
    [Abstract] [Full Text] [Related]

  • 19. Glucagon is a primary controller of hepatic glycogenolysis and gluconeogenesis during muscular work.
    Wasserman DH, Spalding JA, Lacy DB, Colburn CA, Goldstein RE, Cherrington AD.
    Am J Physiol; 1989 Jul; 257(1 Pt 1):E108-17. PubMed ID: 2665514
    [Abstract] [Full Text] [Related]

  • 20. Importance of the hepatic arterial glucose level in generation of the portal signal in conscious dogs.
    Hsieh PS, Moore MC, Neal DW, Cherrington AD.
    Am J Physiol Endocrinol Metab; 2000 Aug; 279(2):E284-92. PubMed ID: 10913027
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.