These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


152 related items for PubMed ID: 8227022

  • 1. Ca(2+)-induced folding and aggregation of skeletal muscle sarcoplasmic reticulum calsequestrin. The involvement of the trifluoperazine-binding site.
    He Z, Dunker AK, Wesson CR, Trumble WR.
    J Biol Chem; 1993 Nov 25; 268(33):24635-41. PubMed ID: 8227022
    [Abstract] [Full Text] [Related]

  • 2. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA, Laver DR, Dulhunty AF.
    Prog Biophys Mol Biol; 2004 May 25; 85(1):33-69. PubMed ID: 15050380
    [Abstract] [Full Text] [Related]

  • 3. Trifluoperazine binding to porcine brain calmodulin and skeletal muscle troponin C.
    Massom L, Lee H, Jarrett HW.
    Biochemistry; 1990 Jan 23; 29(3):671-81. PubMed ID: 2110826
    [Abstract] [Full Text] [Related]

  • 4. Terbium-binding properties of calsequestrin from skeletal muscle sarcoplasmic reticulum.
    Ohnishi M, Reithmeier RA.
    Biochim Biophys Acta; 1987 Sep 24; 915(2):180-7. PubMed ID: 3651471
    [Abstract] [Full Text] [Related]

  • 5. Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum.
    Jones LR, Zhang L, Sanborn K, Jorgensen AO, Kelley J.
    J Biol Chem; 1995 Dec 22; 270(51):30787-96. PubMed ID: 8530521
    [Abstract] [Full Text] [Related]

  • 6. Characterization of cardiac calsequestrin.
    Slupsky JR, Ohnishi M, Carpenter MR, Reithmeier RA.
    Biochemistry; 1987 Oct 06; 26(20):6539-44. PubMed ID: 3427023
    [Abstract] [Full Text] [Related]

  • 7. Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum.
    Guo W, Campbell KP.
    J Biol Chem; 1995 Apr 21; 270(16):9027-30. PubMed ID: 7721813
    [Abstract] [Full Text] [Related]

  • 8. Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres.
    Pape PC, Fénelon K, Lamboley CR, Stachura D.
    J Physiol; 2007 May 15; 581(Pt 1):319-67. PubMed ID: 17331996
    [Abstract] [Full Text] [Related]

  • 9. Interaction of HRC (histidine-rich Ca(2+)-binding protein) and triadin in the lumen of sarcoplasmic reticulum.
    Lee HG, Kang H, Kim DH, Park WJ.
    J Biol Chem; 2001 Oct 26; 276(43):39533-8. PubMed ID: 11504710
    [Abstract] [Full Text] [Related]

  • 10. Regulation of Ca2+ release from the ryanodine receptor of sarcoplasmic reticulum.
    O'Sullivan GH, Heffron JJ.
    Biochem Soc Trans; 1995 May 26; 23(2):358S. PubMed ID: 7545618
    [No Abstract] [Full Text] [Related]

  • 11. Calsequestrin: more than 'only' a luminal Ca2+ buffer inside the sarcoplasmic reticulum.
    Szegedi C, Sárközi S, Herzog A, Jóna I, Varsányi M.
    Biochem J; 1999 Jan 01; 337 ( Pt 1)(Pt 1):19-22. PubMed ID: 9854019
    [Abstract] [Full Text] [Related]

  • 12. Identification of a region of calsequestrin that binds to the junctional face membrane of sarcoplasmic reticulum.
    Collins JH, Tarcsafalvi A, Ikemoto N.
    Biochem Biophys Res Commun; 1990 Feb 28; 167(1):189-93. PubMed ID: 2310388
    [Abstract] [Full Text] [Related]

  • 13. The bulk of Ca2+ released to the myoplasm is free in the sarcoplasmic reticulum and does not unbind from calsequestrin.
    Volpe P, Simon BJ.
    FEBS Lett; 1991 Jan 28; 278(2):274-8. PubMed ID: 1991522
    [Abstract] [Full Text] [Related]

  • 14. Fragmentation of rabbit skeletal muscle calsequestrin: spectral and ion binding properties of the carboxyl-terminal region.
    Ohnishi M, Reithmeier RA.
    Biochemistry; 1987 Nov 17; 26(23):7458-65. PubMed ID: 3427087
    [Abstract] [Full Text] [Related]

  • 15. Effects of drugs with muscle-related side effects and affinity for calsequestrin on the calcium regulatory function of sarcoplasmic reticulum microsomes.
    Kim E, Tam M, Siems WF, Kang C.
    Mol Pharmacol; 2005 Dec 17; 68(6):1708-15. PubMed ID: 16141311
    [Abstract] [Full Text] [Related]

  • 16. The regulation of Ca2+ transport by fast skeletal muscle sarcoplasmic reticulum. Role of calmodulin and of the 53,000-dalton glycoprotein.
    Chiesi M, Carafoli E.
    J Biol Chem; 1982 Jan 25; 257(2):984-91. PubMed ID: 6459325
    [Abstract] [Full Text] [Related]

  • 17. Calsequestrin binds to monomeric and complexed forms of key calcium-handling proteins in native sarcoplasmic reticulum membranes from rabbit skeletal muscle.
    Glover L, Culligan K, Cala S, Mulvey C, Ohlendieck K.
    Biochim Biophys Acta; 2001 Dec 01; 1515(2):120-32. PubMed ID: 11718668
    [Abstract] [Full Text] [Related]

  • 18. Calsequestrin is a major binding protein of myotoxin alpha and an endogenous Ca2+ releaser in sarcoplasmic reticulum.
    Ohkura M, Furukawa K, Tu AT, Ohizumi Y.
    Eur J Pharmacol; 1994 Jun 15; 268(1):R1-2. PubMed ID: 7925605
    [Abstract] [Full Text] [Related]

  • 19. Simultaneous binding of drugs with different chemical structures to Ca2+-calmodulin: crystallographic and spectroscopic studies.
    Vertessy BG, Harmat V, Böcskei Z, Náray-Szabó G, Orosz F, Ovádi J.
    Biochemistry; 1998 Nov 03; 37(44):15300-10. PubMed ID: 9799490
    [Abstract] [Full Text] [Related]

  • 20. Bee venom melittin is a potent toxin for reducing the threshold for calcium-induced calcium release in human and equine skeletal muscle.
    Fletcher JE, Tripolitis L, Beech J.
    Life Sci; 1992 Nov 03; 51(22):1731-8. PubMed ID: 1279340
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.