These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


240 related items for PubMed ID: 8231321

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Deep-heating characteristics of an RF capacitive heating device.
    Kato H, Hiraoka M, Nakajima T, Ishida T.
    Int J Hyperthermia; 1985; 1(1):15-28. PubMed ID: 3915511
    [Abstract] [Full Text] [Related]

  • 3. Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves.
    Gelvich EA, Mazokhin VN.
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1015-23. PubMed ID: 12214873
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Microstrip-antenna design for hyperthermia treatment of superficial tumors.
    Montecchia F.
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):580-8. PubMed ID: 1601439
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. A new applicator utilizing distributed electrodes for hyperthermia: a theoretical approach.
    Kato H, Uchida N, Kasai T, Ishida T.
    Int J Hyperthermia; 1995 Jun; 11(2):287-94. PubMed ID: 7790741
    [Abstract] [Full Text] [Related]

  • 11. [The possibilities of hyperthermia from an engineering standpoint].
    Saitoh Y, Matsuda J, Kato K.
    Gan To Kagaku Ryoho; 1989 Apr; 16(4 Pt 2-2):1425-31. PubMed ID: 2730047
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. 27 MHz hybrid evanescent-mode applicators (HEMA) with flexible heating field for deep and safe subcutaneous hyperthermia.
    Franconi C, Vrba J, Montecchia F.
    Int J Hyperthermia; 1993 Apr; 9(5):655-73. PubMed ID: 8245578
    [Abstract] [Full Text] [Related]

  • 14. The size and distance of the opposite flat applicator change the SAR and thermal distributions of RF capacitive intracavitary hyperthermia.
    Hiraki Y, Nakajo M, Takeshita T, Churei H.
    Int J Hyperthermia; 2000 Apr; 16(3):205-18. PubMed ID: 10830584
    [Abstract] [Full Text] [Related]

  • 15. Deep regional hyperthermia: comparison between the annular phased array and the sigma-60 applicator in the same patients.
    Feldmann HJ, Molls M, Krümplemann S, Stuschke M, Sack H.
    Int J Radiat Oncol Biol Phys; 1993 Apr 30; 26(1):111-6. PubMed ID: 8482617
    [Abstract] [Full Text] [Related]

  • 16. Intra-patient comparison between two annular phased array applicators, Sigma-60 and Sigma-Eye: Applied RF powers and intraluminally measured temperatures.
    Fatehi D, van der Zee J, van Rhoon GC.
    Int J Hyperthermia; 2011 Apr 30; 27(3):214-23. PubMed ID: 21405984
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Design of a clinical deep-body hyperthermia system based on the 'coaxial TEM' applicator.
    De Leeuw AA, Lagendijk JJ.
    Int J Hyperthermia; 1987 Apr 30; 3(5):413-21. PubMed ID: 3681041
    [Abstract] [Full Text] [Related]

  • 19. Deep local hyperthermia for cancer therapy: external electromagnetic and ultrasound techniques.
    Cheung AY, Neyzari A.
    Cancer Res; 1984 Oct 30; 44(10 Suppl):4736s-4744s. PubMed ID: 6467228
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.